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Abstract: This study proposes an effective method to map rice crops using the Sentinel-1 SAR
(Synthetic Aperture Radar) time series over the Camargue region, Southern France. First, the temporal
behavior of the SAR backscattering coefficient over 832 plots containing different crop types was
analyzed. Through this analysis, the rice cultivation was identified using metrics derived from
the Gaussian profile of the VV/VH time series (3 metrics), the variance of the VV/VH time series
(one metric), and the slope of the linear regression of the VH time series (one metric). Using the
derived metrics, rice plots were mapped through two different approaches: decision tree and Random
Forest (RF). To validate the accuracy of each approach, the classified rice map was compared to
the available national data. Similar high overall accuracy was obtained using both approaches.
The overall accuracy obtained using a simple decision tree reached 96.3%, whereas an overall accuracy
of 96.6% was obtained using the RF classifier. The approach, therefore, provides a simple yet precise
and powerful tool to map paddy rice areas.
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1. Introduction

Rice is a staple food resource for more than half of the world population. It plays an important
role in the global economy, food security, and water use. In 2017, rice was classified by the FAO
(Food and Agriculture Organization of the United Nations) as the second most produced cereal in the
world [1]. Moreover, according to the International Food Policy Research Institute, the demand for rice
is increasing by 1.8% per year. Thus, obtaining information on the rice’s location and distribution is of
great importance for food security and water use.

Considered as an important reservoir of biodiversity, the Camargue region of South France is
the main producer and supplier of rice in France. Rice in Camargue plays an important role in the
hydrological balance of the region [2]. In fact, rice crops prevent high levels of salinity in the low lying
soils and thus offer a temporary habitat to migratory bird species. Additionally, rice production in the
region has a significant impact on the regional economy. Therefore, mapping the spatial extent of the
rice is of great importance for the agriculture sector in France.

Several studies have reported using remote sensing for land surface monitoring in agricultural
areas [3–8]. This is particularly the case for rice mapping. Among the many optical sensors, MODIS,
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Landsat, and most recently Sentinel-2 have been used to map irrigated paddy rice [9–12]. For example,
Xiao et al. [9] used the time series of MODIS-derived vegetation indices (LSWI: Land Surface Water
Index, EVI: Enhanced Vegetation Index, and NDVI: Normalized Differential Vegetation Index) to map
paddy rice during the phases of flooding and transplanting. Their study was based on the unique
spectral reflectance of the flooded soil-vegetation mix compared to other croplands. Additionally,
Clauss et al. [13] mapped rice areas in China using MODIS time series products and the support
vector machine. The overall accuracy achieved was 0.90 with a kappa coefficient of 0.77. Moreover,
Li et al. [14] developed a phenology-based algorithm to map rice areas over the Poyang Lake Plain,
China using the normalized EVI and SAVI (Soil Adjusted Vegetation Index) derived from Landsat-8
images. They achieved an overall accuracy of 96.8% and a correlation coefficient R2 = 0.88 when
comparing the produced map with national statistics. However, the cloud cover limits the use of high
spatial resolution optical images for rice mapping, especially in tropical areas where there is cloud
cover more than 70% of the time during the rice growing season. On the other hand, several studies
investigated the capabilities of SAR (Synthetic Aperture Radar) data for rice mapping and monitoring.
These studies assessed the potential of SAR data in the L-band [15], C-band [16,17], and X-band [18] for
rice monitoring. In many studies, rice fields have been mapped based on the low radar backscattering
signal of rice plots in the beginning of the season when the fields are flooded [19–21]. Other studies
used the temporal behavior of the radar backscattering signal in several polarizations to map paddy
rice [22–24]. Lasko et al. [24] used random forest classification to map rice areas using a time series of
Sentinel-1 SAR images in Hanoi, Vietnam. In their study, the highest overall accuracy (93.5% ± 1.33)
was achieved using the ratio of the VV and VH polarizations. Moreover, Forino et al. [23] used the
ratio of the HH and VV polarizations derived from the Cosmo Sky-Med SAR data to map rice areas in
the Mekong Delta, Vietnam. Recently, Ndikumana et al. [25] applied a deep recurrent neural network
(DNN) on a Sentinel-1 SAR time series to classify the agricultural land cover in Camargue, France.
They reached an overall accuracy of 89.6% for agricultural classification.

The recently launched Sentinel-1 SAR satellite offers a powerful tool for agricultural area
classification and monitoring under various weather conditions. The Sentinel-1 satellites provide an
exceptional combination of high spatial and high temporal resolutions for dual polarization synthetic
aperture radar data (6 days of temporal resolution and a 10 m × 10 m pixel spacing). The availability
of a dense time series enables the derivation and analysis of temporally backscattered signals.

This study concentrates on the use of Sentinel-1 temporal backscatter signatures of rice cultivation
to accurately map rice areas. We present a new approach for mapping rice areas using a Sentinel-1
SAR time series over the Camargue region of south-east France. First, the temporal behavior of SAR
backscattering derived from Sentinel-1 images was analyzed over all existing crop types. Then, we
took advantage of the exclusive temporal profile of the rice crop in VH polarization and the VV/VH
ratio, compared to other crop types in the area, to identify a rice plot. Numerous metrics were derived
using the Gaussian fitting of the VV/VH ratio and the linear fitting of the VH time series that were
found to best discriminate rice crops from other crop types. Finally, we applied a decisional tree and a
Random Forest (RF) classifier using the derived metrics to map the rice areas in the Camargue region.
After a detailed description of the study site and dataset in Section 2, Section 3 presents the proposed
methodology. The results and validation are presented in Section 4. A discussion is presented in
Section 5 and finally Section 6 presents the main conclusions.

2. Materials

2.1. Study Site

The study site is the Camargue region located in the south-east of France (centered on 4◦35′ E and
43◦33′ N) (Figure 1). The Camargue has a Mediterranean climate with a mild winter and a long dry
summer. It has a variety of landscapes, such as agricultural areas, urban zones, water areas, and forests.
Agriculture is the main economic sector of the Camargue region. However, among agricultural crops
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rice is the most dominant crop type, having an important impact on the economy and ecology of the
region. According to the INRA (National Institute of Agricultural Research) data of 2011, rice crop
in the Camargue comprises 55% of the agricultural crops. Rice in Camargue is frequently grown in
rotation with rain-fed crops, especially wheat, depending on the soil types. For deep soils, rice is
frequently replaced by durum wheat and is cultivated for one to five years. For shallow soils, farmers
usually prefer continuous rice cultivation [2].
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Figure 1. Location of the study site, Camargue, France. The red border represents the study area and
the colored polygons represent the reference parcels. The background is a SAR) composite of three
bands (Red: VV, Green: VH, and Blue: VV/VH).

2.2. Ground Data

The land cover of 832 reference plots were collected during a field survey performed in July 2017 [25].
The observed crop types are: Alfalfa, Clover, Grassland, Lawn, Melon, Rice, Sunflower, Swamps,
Tomato, Vineyards, and Wheat (Figure 1). Table 1 summarizes the number of plots for each type.
The crop type classification of 2017 performed by Ndikumana et al. [25] revealed that the agricultural
area of the Camargue region is mostly occupied by rice, covering 29.3% of the total agricultural area.
The second most important crop observed is winter wheat with 20.5%. Additionally, both lawn and
grassland occupy 20% of the total crop area.

Table 1. Distribution of the reference plots per class of land cover.

Crop Type Number of Plots Surface Area (ha)

Alfalfa 45 139
Clover 26 76
Grassland 49 157
Lawn 27 201
Melon 23 76
Rice 319 1072
Sunflower 78 230
Swamps 19 101
Tomato 14 48
Vineyards 28 119
Wheat 204 650
Total 832 2869
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Figure 2 shows the temporal variation of the Normalized Differential Vegetation index (NDVI) for
each crop type between March and October 2017. These NDVI values are calculated using Sentinel-2
images corrected for atmospheric effects and averaged for each crop type. Among the observed crop
types, wheat is the only winter crop in the region. Additionally, it can be noticed that Camargue has a
single cropping season of rice. According to the performed field surveys, the sowing of the rice crop in
2017 occurred in the first 15 days of May and the harvesting occurred from the end of September to the
beginning of October.
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Figure 2. NDVI time series of 11 crop types in the study area.

2.3. SAR Data

Since rice cultivation in Camargue takes place between May and October of each year, we
focus our analysis of SAR data only on this period. For this reason, thirty-one S1 images obtained
from the Sentinel-1A (S1A) and Sentinel-1B (S1B) satellite constellation operating at the C-band
(frequency = 5.406 GHz, wavelength ~ 6 cm) were downloaded for the period between 08 April 2017
and 29 October 2017. The 31 S1 images used were acquired in the Interferometric Wide Swath (IW)
imaging mode with the VV and VH polarizations. In addition, the images were generated from the
high-resolution Level-1 Ground Range Detected (GRD) product with 10 m × 10 m pixel spacing. These
Sentinel-1 images are available via the Copernicus website (https://scihub.copernicus.eu/dhus/#/home).
To calibrate the S1 images (radiometric and geometric correction); the Sentinel-1 Toolbox (S1TBX)
developed by the ESA (European Spatial Agency) was used. The radiometric calibration aims to
convert the digital number values of the S1 images into backscattering coefficients (σ◦) in a linear unit.
The radiometric accuracy of the Sentinel-1 SAR backscattering coefficient is approximately 0.70 dB
(3σ) for the VV polarization and 1.0 dB (3σ) for the VH polarization [26]. The aim of the geometric
correction is to ortho-rectify the S1 images using the digital elevation model of the SRTM “Shuttle
Radar Topography Mission” at 30 m spatial resolution. It is good to mention here that the study area is
relatively flat with no high slope areas. A multi-temporal speckle filter, given in Equation (1), was
then applied to the 31 calibrated S1 images to reduce the speckle noise in each SAR image [27]. Finally,
a temporal series of 31 calibrated S1 images were obtained in the WGS-84 geographic coordinate
system (World Geographic System 1984).

Jk(x, y) =
〈
Ik(x, y)

〉
M

M∑
i=1

Ii(x, y)〈
Ii(x, y)

〉 (1)

where Jk(x, y) is the radar intensity of output image k at pixel (x, y), Ii(x, y) is the radar intensity of
input image i at pixel (x, y), and

〈
Ii(x, y)

〉
is the local mean intensity of input image I at pixel (x, y).

https://scihub.copernicus.eu/dhus/#/home
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3. Methodology

A comprehensive overview of the methodology is presented in Figure 3. First, the temporal
behavior of the Sentinel-1 SAR backscattering coefficients (σ◦) over agricultural plots was studied to
determine the best metrics that identify and discriminate the rice plots. Two methods were tested for
mapping the rice areas. The first used the decision tree and the second was based on a Random Forest
classifier. For the plots’ limit, we used a thematic vector file of land cover produced by INRA in 2011.
First, agriculture plots were extracted by masking the urban, water and forest plots. The extracted
plots contain the 832 reference plots surveyed for crop types in 2017 (described in Section 2.2). Then,
the mean backscattering coefficient was calculated for each plot from each preprocessed S1 image by
averaging the σ◦ values in the linear unit of all the pixels within the plot. The mean values of the
832 reference plots were further used for analyzing the temporal behavior of SAR backscattering and
generating the suitable metrics used for classification.
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3.1. Temporal Behavior of σ◦ SAR Backscattering over Agricultural Plots

An analysis of the temporal behavior of the Sentinel-1 backscattering coefficient σ◦ at the VV
and VH polarizations as well as the ratio of VV/VH was performed over all the crop types of the
reference plots to define the metrics that allow the separation of the rice plots. Figures 4 and 5 show
the backscattering coefficient σ◦ averaged for all reference plots of the same crop type at each date
and plotted with the corresponding standard deviation. By comparing the temporal behavior of the
time series signals for rice with that of each crop type, we observe that the rice plots have a different
temporal behavior for both the VV/VH ratio and VH backscattering. In fact, the temporal series of
the VV/VH signal for rice approximately follows a Gaussian behavior for the period between May
and September (Day of Year (DOY) between 120 and 270) (Figure 5). Moreover for the VH signal,
the rice shows an increasing linear profile during the same period. In addition, VV/VH shows a high
variance for rice. These unique characteristics of rice are used to classify the rice cultivated plots.



Remote Sens. 2019, 11, 887 6 of 16

The calculated metrics, used for classification, includes the Gaussian fitting parameters of the VV/VH
time series, the variance of the VV/VH signal, and the slope of the linear fitting of the VH signal
(between May-DOY 120 and September-DOY 270).Remote Sens. 2018, 8, x 6 of 16 
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3.1.1. Gaussian Fitting of VV/VH

The profile of the time series for VV/VH follows a Gaussian bell shape for the rice plots.
This characteristic is especially observed over rice cultivation. For this reason, we proposed fitting the
VV/VH time series of each plot with a Gaussian function. First, the time series values of VV/VH for
each reference plot were normalized using the unity-based normalization in Equation 2 to adjust the
values at a common scale (between 0 and 1).

Y′ =
Y −Ymin

Ymax −Ymin
(2)

where Y’ is the normalized value, Y is the initial value of the time series, Ymin is the minimum value of
the time series, and Ymax is the maximum value of the time series.

To avoid small and noisy peaks of the raw VV/VH data (black curve in Figure 6), the temporal
series of the VV/VH ratio was smoothed for each reference plot using a Gaussian filter (blue curve
in Figure 5). The smoothed data allowed us to estimate the peak position and amplitude required to
initialize the Gaussian fitting. In fact, the Gaussian fitting with the least square method requires the
initial values of the peak position and amplitude. Using the least square method, the VV/VH time
series was then fitted with a Gaussian function presented in Equation 3 (red curve in Figure 6):

y = a e−
(x−b)2

2c2 (3)

where a is the amplitude, b is the position of the maximum in days, and c is the standard deviation of
the fitting function in days.
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For each plot we can then obtain the resultant fitting parameters a, b, and c, as well as the
correlation coefficient R2. Since the rice crop is the only crop among the 11 studied crops that follows
the Gaussian profile in VV/VH ratio, it is possible to distinguish the rice plots using the obtained
fitting parameters.

3.1.2. VV/VH Signal Variance

Variance is the expectation of the squared deviation of a random variable from its mean. Informally,
it measures how far a set of numbers is spread out from their average value. It is expected that the
variance values for VV/VH in rice plots are higher than other crop types, since the values change rapidly
during the growing season. For example, Figure 4 shows a slight variation of VV/VH for vineyards,
grasslands, and swamps during the period between May and September, whereas an important
variation of the VV/VH signal is observed for the rice plots. For this reason, the variance value of
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VV/VH was calculated for each parcel and is considered to be an additional metric for classifying
rice plots.

3.1.3. VH Linear Fitting

Another unique observation for rice cultivation is the increasing linear profile of the VH
backscattering during the growing cycle (between DOY 120 and 270). Thus, the VH temporal
series of each plot was fitted with a linear regression model according to Equation 4:

y = Sx + n (4)

Therefore, for each plot we can obtain the resultant slope (S in dB/DOY) and intercept (n).
Rice crops can be thus discriminated using high positive slope values of the fitted linear model
compared to other crop types.

3.2. Decision Tree Classification

To classify rice crops, a decision tree based on four extracted metrics was built. The rules of the
decision tree were determined from the distribution of the values of metrics for all crop types (Figure 7).
The results show that a plot with rice cultivation can be identified using the following rules:

Rice =


140 ≤ b ≤ 210
R2
≥ 0.5

Variance
(

VV
VH

)
≥ 2.5

S > 0.01

(5)
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Figure 7. Distribution of the (a) position of the maximum of the VV/VH Gaussian fitting; (b) variance
of the VV/VH time series; and (c) slope of the VH linear fitting for 11 crop types represented by the
normal distribution function.

The values of b and R2 are related to the Gaussian fitting of VV/VH because the temporal series of
VV/VH follows a Gaussian function for rice, thus the fitting values of b and R2 are within the proposed
thresholds. The R2 of the Gaussian fitting was higher than 0.5 for rice and lower than 0.5 for all other
crop types. The condition on S represents the increasing linear profile of the rice cultivation in VH
polarization. A lower limit value of 0.01 for S was proposed to describe this increasing linear profile.
In addition, a lower limit of 2.5 on the variance of the (VV/VH) time series determines whether the
signal has an important variation, which corresponds only to rice cultivation. The accuracy of the
proposed decision tree classification is further presented in Section 4.

3.3. Random Forest Classification

Random Forests (RF) is a learning method for classification based on generating a large number of
decision trees, where each is constructed using a different subset of the training set. These subsets are
usually selected by sampling at random and with replacement from the original data set. The decision
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trees are then used to identify a classification consensus by selecting the most common output. It has
demonstrated its ability to yield high quality classification with a high computational time. In our
study, we classified rice and non-rice plots by introducing the extracted metrics into the random
forest classifier available via the “R” open statistical computing software (Package “randomForest”).
The random forest is trained using the values of the position of the maximum (b), the standard deviation
(c), and the correlation coefficient (R2) of the VV/VH Gaussian fitting, the variance of VV/VH, and the
slope S of the VH linear fitting for the 832 reference plots for the two classes (Rice and other crops).
In fact, 5 folds cross-validation is first performed using the 832 reference plot. To do so, the dataset is
randomly divided into 5 folds of equal size. Four folds are used to train the model, and the fifth fold is
used for the validation phase. This operation is repeated five times, so that each fold will be a possible
validation set. The number of trees chosen is 300 and the number of features used in the construction
of each tree is 2. Finally, the map obtained using the trained RF classifier was further compared to the
available national data. The overall accuracy, Kappa, and F1 score were calculated for the obtained
confusion matrix [28,29]:

Overall Accuracy “P0” =
TP + TN

TP + TN + FN + FP
(6)

Expected Accuracy “Pe” =
(TP + FP) × (TP + FN) + (FN + TN) × (FP + TN)

(TP + TN + FN + FP)2 (7)

Kappa =
P0 − Pe

1− Pe
(8)

F1 score =
2TP

2TP + FP + FN
(9)

where TP is the number of the rice plots truly classified as rice plots, TN is the number non-rice plots
truly classified as non-rice plots, FP is the number of non-rice plots falsely classified as rice, FN is
the number of rice plots falsely classified as non-rice plots, N is the total number of plots, P0 is the
observed accuracy and Pe is the expected accuracy.

4. Results

In this section, we report the results of the proposed classifications. First, the 5 folds cross-validation
of the RF classifier shows that out of the 319 rice plots only 5 plots were miss-classified as other crops
and one non-rice plot was classified as rice. The confusion matrix obtained when performing the
5 folds cross-validation shows an overall accuracy of 99.2%. Then, the performance of the proposed
classifications (decision tree and random forest) was assessed by comparing the produced rice map
to the national data of the RPG-2017 (Graphical Registered Parcels) provided freely by the French
government (https://www.data.gouv.fr). The validation is done over all of the classified plots in our
study area (9976 plots in total). Each field is checked if it is correctly classified through being compared
with the declared rice plots of the RPG data. Table 2 shows the confusion matrix obtained using the
simple decision tree, whereas Table 3 presents the confusion matrix produced using the random forest
classification. The overall accuracy, Kappa, and F1 score for both classifiers were calculated. Similar
high accuracy is obtained using both proposed methods. The RF classifier produces an overall accuracy
of 96.7% whereas the decision tree gives 96.3% overall accuracy. In fact, using the proposed decision
tree, 325 rice plots were misclassified as non-rice plots, whereas using the RF classifier 266 rice plots
were misclassified as non-rice plot according to the RPG data. Additionally, using the RF classifier
68 non-rice plots were classified as rice, whereas using the decision tree method 47 non-rice plots were
classified as rice.

https://www.data.gouv.fr
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Table 2. Confusion matrix for decisional tree classification.

Class Value Rice Other Crop Total User Accuracy

Rice 3120 325 3445 90.5%
Other Crop 47 6475 6522 99.2%

Total 3167 6800 9967
Producer Accuracy 98.5% 95.2%

Overall Accuracy 96.3%

Kappa 91.5%

F1 score 94.3%

Table 3. Confusion matrix for the RF classifier.

Class Value Rice Other Crop Total User Accuracy

Rice 3179 266 3445 92.3%
Other Crop 68 6454 6522 98.9%

Total 3247 6720 9967
Producer Accuracy 97.9% 96.0%

Overall Accuracy 96.6%

Kappa 92.5%

F1 score 95.0%

Moreover, the metrics’ importance was assessed for the random forest classifier. The significant
metrics that contributed the most to the classification of the rice plots were analyzed according to the
increase in the mean square error (%IncMSE) of the predictions (Figure 8). The results show that the
high significant metrics are the variance of the VV/VH and the slope of the linear fitting of the VH,
whereas the less significant metrics are the maximum position and standard deviation of the Gaussian
fitting of VV/VH.
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The rice area map of the Camargue region was finally established by applying the generated
random forest classifier (Figure 9a). The estimated rice area in 2017 obtained using the proposed
classification is 9740 ha. Comparing this area to the rice area from the IGN data of 2011, we observe
that the rice cultivation area has significantly decreased in the region from 16,000 ha in 2011 to 9740 ha
in 2017 (our estimation). The obtained rice area was then compared to the rice area declared in the
RPG data (Figure 9b). Using the proposed classification the rice area was estimated as 9740 ha slightly
lower than the declared area (10,015 ha). Thus, the overall accuracy in the rice area estimation reaches
97.3%. According to the proposed classification, the rice area in 2017 occupied approximately 32.5%
of the total agricultural area. This percentage of rice crops agrees with the percentage obtained by
Ndikoumana et al. [25] (29.3%).
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5. Discussion

In this study we mapped rice areas in the Camargue region using Sentinel-1 SAR backscattering
time series and two classification approaches: random forest and decision tree. We first analyzed the
SAR backscattering coefficient over the entire agricultural crop existing in the area and showed that the
rice plots have a specific temporal profile in VH polarization and in the VV/VH ratio. Then, we mapped
then rice areas based on metrics derived from the VH and VV/VH time series. The obtained results
were finally compared to existing national data. This validation indicated that the proposed approach
has good performance where the overall accuracy was 96.6% and Kappa coefficient was better than
92.5% (using RF classifier).

To properly assess the quality of the obtained results, we compared the classification results
with results obtained by other classification methods using the same dataset. Through literature,
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Ndikumana et al. [25] classified the agricultural areas in Camargue, France by applying the deep
recurrent neural network (DNN) on a Sentinel-1 SAR time series. Rice crop was one of the classified
agricultural crops. They showed that the overall accuracy of the agricultural classification using the
DNN is 89.6%. In particular, the confusion matrix obtained using the 5 folds cross-validation of the
DNN showed that the producer accuracy of the rice class reaches 95.7% and the user accuracy reaches
97.5%. In their study, they also tested the RF classifier using the S1 time series. The confusion matrix
obtained using the RF classifier shows that the producer accuracy for rice class reached 92.7% and
the user accuracy reached 97.6% when performing the 5 folds cross-validation. On the other hand,
the 5 folds cross-validation of the RF classifier in our approach shows that the producer accuracy
reaches 99.0% while the user accuracy reaches 98.4%. Figure 10 presents the classified rice areas
produced using their proposed approach (using the DNN). Since their approach uses the same dataset
as our study (Sentinel-1 time series and ground data) and was accomplished for the same year (2017),
a comparison was also performed between the obtained rice class of Ndikumana et al. [25] and the
RPG-2017. The 9976 plots classified in our proposed approach were checked for being rice or other
crop in the agricultural land cover map proposed by Ndikumana et al. [25] and then compared to the
previous results obtained for RPG data. Table 4 presents the confusion matrix produced by comparing
Ndikumana’s rice areas and RPG rice areas based on the classified plots in our approach. The overall
accuracy of the Ndikumana rice classification when compared to RPG is 94.4% slightly lower than the
accuracy obtained using our approach (96.6%). Both the user and producer accuracies are higher for
our approach (92.3% and 97.9% respectively) compared to Ndikumana’s approach (88.3% and 95.2%
respectively) when comparing to the RPG data. Based on the comparison of both rice areas to the RPG
data, we can conclude that our proposed method remains a powerful tool to map paddy rice areas.
The complexity of the method used by Ndikumana et al. [25] to produce the land cover map and the
simplicity of our method with better accuracy makes our proposed approach powerful for rice area
mapping. However, it is good to mention that Ndikumana et al. [25] classified the 11 agricultural
classes, rather than only the paddy rice.
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Table 4. Confusion matrix for the comparison between rice areas derived from Ndikumana Agricultural
Land Cover and rice areas from RPG-2017 data.

Class Value Rice Other Crop Total User Accuracy

Rice 3042 403 3445 88.3%
Other Crop 153 6369 6522 97.6%

Total 3159 6772 9967
Producer Accuracy 95.2% 94.0%

Overall Accuracy 94.4%

Kappa 87.5%

F1 score 91.6%

Several studies have already used traditional machine learning algorithms for paddy rice mapping
such as RF, Support Vector Machine (SVM), and decision tree [24,30–34]. Recently, Zhang et al. [31]
used the Land Surface Temperature and phenological parameters derived from the NDVI time series
of Landsat 8 images (fused with MODIS NDVI to overcome the cloud limitation) with a convolutional
neural network approach to map rice areas in the Dongting Lake Area of China. The overall accuracy
obtained was 97.1%. On the other hand, when using the classical machine learning methods (SVM
and RF) their accuracy decreased to 90.6% and 89.4%, respectively. They report in their study that rice
and other crops are often misclassified when using only the spectral information of optical images.
When the spectral features were only considered, rice plots were misclassified as grassland and other
vegetation type. This limitation is not present in our study as we were able to accurately classify rice
areas in the presence of other crops especially those grown in summer (sunflower, grassland . . . ).
In addition, Mansaray et al. [30] combined the VH polarization of Sentinel-1A images with NDVI
and Modified NDWI derived from Landsat-8 images to map rice areas in southeast china. Using the
decision tree approach, they reached an overall accuracy of 85% when using both SAR and Optical
data. Using only S1A images the overall accuracy obtained in their study was 79%. The study site
examined was mainly composed of urban, water, and tree areas. Moreover, the data fusion of optical
and radar time series has been also performed in the study of Park et al. [32] where they mapped rice
areas by combining Landsat-8 images with SAR data of RADARSAT and ALOS/PALSAR on two sites
in South Korea. The highest accuracy (98.7%) was obtained when using a fusion of SAR and optical
data with a digital elevation model and applying the SVM classification. The land cover in the studied
zone was mainly composed of rice, grains, pasture, bare soil and vineyards. A common limitation
among these discussed studies is the cloud cover that limits the availability of optical images during the
rice growing cycle. Using only SAR data, Zhang et al. [33] mapped paddy rice using multi-temporal
ALOS/PALSAR imagery in southeast China. The studied area was mainly composed of rice, dryland
crops (e.g., rapeseed, vegetables) and orchards. They obtained 90% user accuracy and 76% producer
accuracy when applying the SVM classifier. Lasko et al. [24] have mapped rice areas using Sentinel-1A
time series in Hanoi, Vietnam by applying the random forest classifier. The highest overall accuracy
(93.3%) was obtained when using the VV/VH ratio. Clauss et al. [34] also mapped rice areas over
six different study sites using S1 temporal series by applying the decision tree. They chose the VH
polarization due to the high dynamic range of backscatter over rice areas. They achieved an overall
accuracy of 83%. In their study they recommend that increasing the temporal density of the used
Sentinel-1 images would help better increase the accuracy of the classification.

Most studies tend to use classical machine learning methods applied on optical or/and SAR data in
order to map rice areas. Among the several discussed studies, our proposed method remains powerful
since it combines the high accuracy, the simplicity of the applied method and the availability of the
used dataset. The obtained accuracy is equivalent and even better than accuracies obtained by complex
methods that may require large input datasets. Although the supervised classification highly depends
on the study site (mainly on existing crop types) and ground data, the proposed approach could be
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used in any agricultural area with similar rice cropping practices and land cover. However, the metrics
and the threshold used in this study should be adapted for a good application of this method in other
geographical contexts. The method uses the SAR temporal signature of rice plots during its growing
season to classify the rice areas. The temporal behavior of the SAR backscattering for rice plots allows
us to extract metrics that best describe the rice cultivation, regardless of the surrounding agricultural
land cover. Thus, the suggested classification could be applied over different study sites. Moreover,
unlike other approaches that directly implement the entire time series to classify a crop type, this
method concentrates on first describing a rice cultivation using the SAR time series and introducing
relevant metrics that allow us to accurately detect rice crops in a classification technique. Future
work should concentrate on the implementation of this approach over other study sites to ensure the
transferability of the method. The method could be adapted to other study sites with other forms
of land cover and crop types. Moreover, it could be adjusted to work over sites with more than one
cropping cycle of rice per year.

6. Conclusions

In this paper, a simple yet powerful tool for mapping the rice area over the Camargue region of
France using a Sentinel-1 SAR data time series was introduced. The SAR backscattering time series
of 11 agricultural crop types in the area were first analyzed during the period between May 2017
and September 2017. The analysis of the SAR temporal behavior revealed that rice crops are clearly
described by Gaussian profile of the “VV/VH” time series, an increasing linear profile of the “VH” time
series, and a high fluctuation in the VV/VH signal when compared to other crop types. To classify
rice areas using this description, the position of the maximum, standard deviation, and correlation
coefficient of the Gaussian fitting curve of VV/VH, the variance of the VV/VH signal, and the slope of
the linear fitting of the VH signal were extracted for each plot during the period between May 2017 and
September 2017. The derived metrics were then introduced into a decisional tree and a random
forest classifier to classify the rice areas. The results show a significant accuracy when comparing the
classified rice map to the national data. A very high overall accuracy was obtained using both the
decisional tree (96.3%) and RF classifier (96.6%). Finally, the accuracy of the estimated rice area reaches
97.3% when comparing the rice classified area to the declared rice area for the year 2017.
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