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Abstract 

Crop mapping and yield estimation of wheat in the Bekaa plain of Lebanon 

 

With global production exceeding 750 million tons in 2017, wheat is considered a staple 

food for the world's population. Wheat mapping and monitoring could then be a very 

effective tool for achieving the Sustainable Development Goals (SDG2-Zero Hunger). In 

Lebanon, wheat receives technical and financial support, yet many errors occur in 

estimating the wheat acreage due to absence of reliable agricultural census and lack of 

wheat mapping using satellite images. In addition, identifying the best rotation type and 

agricultural practices leads to identify the most efficient wheat-based cropping system in 

terms of productivity (protein production and net profit), efficiency (water and nitrogen 

use), as well as the economic risk on the farmer. Thus, the aim of the current study, which 

is conducted in the Bekaa plain of Lebanon, is to utilize remote sensing technology and 

crop modelling for supporting policy makers and end-users in making strategic decisions 

regarding one of the most food security-driving crop in the Mediterranean (i.e. winter 

wheat). 

The first part of the thesis evaluates the potential of optical data for early winter wheat 

mapping by allowing the transfer of knowledge from one year to another (2016 and 2017 

in this study). For its high spatial and temporal resolutions, Sentinel-2 data are employed. 

Results show that when the developed approach was applied on Sentinel-2 time series of 

2017 in using 2016 ground truth data, the overall accuracy reaches 87.0%, whereas, when 

implemented using 2017 ground truth data, the overall accuracy is 82.6% on 2016 data. 

The outputs are executed up to six weeks before harvest, as well as distinguishing winter 

wheat from similar cereals (barley and triticale).  

The second part of the thesis examines the ability of the SAR (Synthetic Aperture Radar) 

C-band data of the new radar satellite (Sentinel-1) regarding its ability to monitor winter 

wheat crop by identifying the economically important phenological phases that cannot be 

detected relying solely on NDVI derived from optical satellite Sentinel-2. Results show 

that VV polarization at incidence angle of 32°-34° is best for predicting heading, VH 
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polarization at incidence angle of 43°-45° for predicting soft dough, and the ratio VV/VH 

at incidence angle of 32°-34° for predicting germination and harvesting.  

The third part of the thesis is dedicated to test, in contrasted biophysical and management 

conditions, the hypothesis that promoting wheat-fava bean rotation leads to a significantly 

better productivity and resources use efficiency, as well as, reducing economic risk than 

the promoted intensive wheat-wheat and wheat-potato rotations. The cropping simulation 

model “CropSyst” is used after being calibrated and validated by using experimental data 

for different wheat-based rotations combining different soil, climate and management 

options. The results show that there is no particular optimal scenario that can 

simultaneously ensure high productivity, reduce economic risk, and achieve high wheat- 

water- and nitrogen-use efficiency. However, the wheat-fava bean rotation cultivated with 

no wheat fertilization appears to be a better substitute to the wheat-wheat rotation in terms 

of protein production in both (low and high) Water Holding Capacity (WHC) soils (0.93 

t/ha versus 0.8 t/ha in low WHC and 1.34 t/ha versus 1.17 t/ha in high WHC). This cropping 

system could achieve a higher net profit, showing high resource-use efficiency and good 

economic sustainability. Moreover, a very high profit could only be attained with the 

wheat-potato rotation (8640 US$/ha and 12170 US$/ha), yet with low input-efficiency and 

high economic risk. 

Keywords: Lebanon, Bekaa plain, Winter wheat, Remote sensing, Sentinel-1/2, Crop 

modelling, CropSyst. 
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Résumé 

Crop mapping and yield estimation of wheat in the Bekaa plain of Lebanon 

 

Avec une production mondiale dépassant 750 millions de tonnes en 2017, le blé est 

considéré comme un aliment de base pour la population mondiale. Sa cartographie et sa 

surveillance pourraient alors se révéler être un outil très efficace pour atteindre les objectifs 

de développement durable (ODD2-Faim zéro). Au Liban, en vue d’assurer la sécurité 

alimentaire nationale, le blé reçoit un soutien financier et technique du gouvernement. 

Cependant, de nombreuses erreurs dans l'estimation de la superficie en blé à travers le pays 

sont dues principalement aux déclarations peu fiables des agriculteurs. De plus, le choix 

du système de culture basé sur le blé (en termes de type de rotation et de pratiques 

agricoles) peut avoir un impact considérable sur la productivité du système (protéines et 

rentabilité), l'efficacité d'utilisation des ressources (efficacité d'utilisation de l'eau et 

utilisation de l’azote), ainsi que sur le risque économique pour les agriculteurs. La présente 

étude menée dans la plaine de la Bekaa au Liban a pour objectif d'utiliser la télédétection 

et la modélisation de la croissance des cultures pour fournir aux décideurs politiques et aux 

utilisateurs finaux les informations dont ils ont besoin sur le blé d’hiver. 

La première partie de la thèse évalue le potentiel des images optiques pour la cartographie 

du blé d'hiver précoce en permettant le transfert de connaissances d'une année à l'autre 

(2016 et 2017) Les résultats montrent que, lorsque l'approche développée est appliquée à 

la série chronologique Sentinel-2 de 2017, en utilisant les données de vérité au sol 2016, la 

précision globale atteint 87,0%, tandis que, lorsqu'elle est mise en œuvre avec les données 

de vérité au sol 2017, elle est de 82,6% en 2016. Les classifications pour distinguer le blé 

d'hiver de céréales similaires (orge et triticale) sont réalisées jusqu'à six semaines avant la 

récolte.  

La deuxième partie de la thèse examine la capacité des images radar en bande C du nouveau 

satellite Sentinel-1 à surveiller la culture de blé d'hiver en identifiant les stades 

phénologiques économiquement importants qui ne peuvent pas être détectés en utilisant 

uniquement les indices issus de l’optique (Sentinel-2). Les résultats montrent que la 



 

xvi 

 

polarisation VV (incidence de  32°-34°) et VH (incidence de 43°-45°) sont respectivement 

préférables pour estimer les stades de l'épiaison et de pâteux mou. De plus, le rapport 

VV/VH (incidence de 32°-34°) est préférable pour détecter la germination et la récolte. 

La troisième partie de la thèse a pour objectif de vérifier si la rotation blé-féverole, 

nécessitant des intrants agricoles extensifs (eau et azote), a une performance nettement 

meilleure que la rotation intensive blé-blé en termes de productivité, d’utilisation 

rationnelle des ressources, et de minimisation du risque économique à l’échelle parcellaire. 

Le modèle de croissance des cultures «CropSyst» a été adopté après avoir été calibré et 

validé sur notre zone d'étude. Les résultats montrent qu’il n’existe pas un scénario de 

système de culture optimal permettant d’assurer une productivité élevée, de réduire le 

risque économique et d’obtenir une efficacité élevée de l’utilisation de l’eau et de l’azote. 

Cependant, le scenario de rotation blé-féverole sans fertilisation du blé semble être un 

meilleur substitut à la rotation blé-blé en termes de production de protéines. Pour un sol 

avec une faible capacité de rétention, la production de protéines est de 0,93 t/ha et de 0,8 

t/ha respectivement pour les rotations blé-féverole et blé-blé. Pour un sol avec capacité de 

rétention élevée, la production de protéines est de 1,34 t/ha pour blé-féverole contre 1,17 

t/ha pour blé-blé. De plus, ce système de culture blé-féverole pourrait générer un bénéfice 

net plus élevé que celui du blé-blé. Enfin, la rotation blé-pomme de terre peut générer des 

bénéfices nets très élevés (8640 US$/ha et 12170 US$/ha) mais avec une faible efficacité 

des intrants et un risque économique élevé. 

Mots-clés: Liban, plaine de la Bekaa, blé d'hiver, télédétection, Sentinel-1/2, modélisation 

de cultures, CropSyst. 
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1. Contexte général 

Comme prévu, notamment dans la dernière décennie écoulée, la population mondiale n’a 

cessé de croître de façon exponentielle. Selon les estimations, elle pourrait atteindre plus 

de 9 milliards en 2050 (Saadi et al., 2015). Cette augmentation sera par conséquent 

accompagnée d’une forte demande en nourriture mettant alors en danger la sécurité 

alimentaire (Shiferaw et al., 2013). Ces besoins pourraient être comblés par une hausse 

concomitante de la production alimentaire. Selon les données de la FAO, la production 

céréalière, plus précisément celle du blé, a atteint 754.8 millions de tonnes en 2017 

(Nasrallah et al., 2018). Ces chiffres sont guère surprenants, étant donné que le principal 

régime alimentaire mondial est basé sur les céréales et leurs dérivés. 

Pour garantir la sécurité alimentaire, les décideurs et les politiques mises en place, 

notamment en Méditerranée, promeuvent et encouragent la culture du blé (Wright and 

Cafiero, 2010) afin d’accroître la production d’une source essentielle de nutriments (en 

termes de calories et de protéines) (Wright et al., 2003). Néanmoins, il en résulte de 

nombreuses conséquences pour ce qui concerne les décideurs mais aussi les bénéficiaires. 

L’impact pourrait être économique (le risque pris par l’agriculteur générant une rentabilité 

faible), environnemental (une pollution azotée et une surexploitation des ressources 

hydriques) et/ou lié à la sécurité alimentaire (faible productivité ne permettant pas de 

répondre à la demande).  

Les principaux problèmes limitant la réussite d’une approche visant à augmenter la 

production de blé et à répondre à la demande alimentaire sont de différents ordres :  

 Absence de classification des parcelles de blé d’hiver. En effet, la culture du blé 

nécessite un changement annuel d’emplacement. Il est très difficile de déterminer 

sa distribution spatiale et d’en estimer les surfaces cultivées. Ceci génère des 

difficultés en terme de mise en place optimale d’un système de subventions ou bien 

pour ce qui concerne les bonnes pratiques de planification de la production et de 

suivi post-récolte à l’échelle d’une politique nationale 

 Au niveau territorial, l’absence d’une analyse et de suivi  de du statut phénologique 

des plantes. Etant donné que le blé d’hiver fait partie des plantes les plus exigeantes 
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en termes d’intrants, les quantités et le calendrier de production doivent être mieux 

cernés. Il est en effet particulièrement dépendant des facteurs climatiques et, si on 

ne tient pas compte de son cycle naturel et de l’absence de contrôle, cela limiterait 

les interventions nécessaires adaptées à sa gestion à l’échelle régionale.  

 Manque de mise en place de politiques adaptées. La production de blé d’hiver est 

essentiellement impactée par la bonne gestion des cultures. L’absence de décisions 

sages en lien avec le choix d’un système de culture dominé par le blé d’hiver 

conduirait à un manque d’efficacité dans l’utilisation des ressources, ce qui 

affecterait directement le bénéfice net de l’agriculteur. Dans des économies 

particulièrement fragiles, les incertitudes concernant les bénéfices nets rotationnels 

positionneraient les agriculteurs dans une situation à haut risque pour garantir leurs 

revenus à l’échelle de la parcelle.  

Les conséquences et les problèmes relatifs à la production adéquate de blé, afin de 

combattre la faim et répondre à la demande, apparaissent au niveau des politiques et des 

décideurs, mais aussi à celui de l’agriculteur. Ainsi, le fil conducteur de cette thèse prend 

en compte ces deux échelles. La durée du cycle de production du blé d’hiver varie selon 

les conditions climatiques (Urruty et al., 2017). Les dates de semis dépendent des toutes 

premières pluies automnales (Lunn et al., 2002). Pendant la saison, la durée de la période 

de dormance est déterminée par les degrés-jours de croissance (DJC) accumulés en hiver 

(Skakun et al., 2017a). La phase de croissance végétative s’achève au printemps, lorsque 

émergent les épis sous l’influence de la température. S’ensuit la floraison et débute alors 

le compte à rebours de la récolte. Tout au long de ce cycle qui dure de sept à huit mois, le 

blé d’hiver devra être surveillé et contrôlé afin d’identifier le timing des différentes étapes 

des phases phénologiques, ce qui est déterminant pour, d’une part, mieux maîtriser les 

décisions stratégiques (gestion et suivi), et, d’autre part, identifier la distribution territoriale 

des parcelles dédiées au blé d’hiver au niveau d’une grande région. En outre, ces zones 

devront être évaluées avant le début des récoltes. Néanmoins, à l’échelle de la parcelle, il 

reste nécessaire d’identifier les meilleurs systèmes de culture à adopter pour de hauts 

rendements, une meilleure utilisation des ressources avec un faible risque économique sans 

porter atteinte aux moyens de subsistence des agriculteurs.  
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Une surveillance stricte et un recensement de la distribution territoriale du blé d’hiver, 

fondés sur des instruments in-situ et des ressources humaines, rendent possible 

l’identification (jusqu’à un certain point) des phases importantes de la phénologie de cette 

céréale et sa distribution spatiale afin de recenser les zones de culture. Ajoutée à cela, 

l’expérimentation à long terme de différents systèmes de culture, gérés de diverses 

manières et axés sur le blé d’hiver semé dans différents types de sols, pourrait aussi fournir 

les informations clé nécessaires aux agriculteurs et aux décideurs (Constantin et al., 2011). 

Nonobstant, le suivi de terrain et les mesures in-situ sont extrêmement coûteux et 

requièrent d’énormes ressources humaines et financières. Par ailleurs, l’erreur humaine, 

lors des relevés de données, peut induire des inexactitudes ou bien accroître les incertitudes.  

Par conséquent, si on utilise les technologies spatiales avancées, on peut réussir à réduire 

le coût financier et celui des ressources humaines. L’importance de la télédétection réside 

dans le fait que les capteurs à haute résolution (actifs et passifs) sont mis gratuitement à 

disposition par l’Agence spatiale européenne (ASE). Avec ces résolutions, spatiale (10 m) 

et temporelle (5-6 jours), il est possible de surveiller et d’établir une cartographie du blé 

d’hiver en temps presque réel (Battude et al., 2016a).  

De plus, afin de diminuer les coûts et les ressources humaines, il est essentiel de s’appuyer 

sur des modèles de culture qui permettent des simulations à long terme avec différentes 

combinaisons de types de rotation et de gestion des cultures (Alva et al., 2010). A l’échelle 

de la parcelle, en complément de l’identification de la distribution spatiale et de l’évolution 

temporelle du blé d’hiver grâce à la télédétection, l’utilisation de tels modèles permet 

d’expérimenter différents scénarios climatiques, séquences de rotation et modes de gestion 

des cultures (Stockle et al., 2003). Au final, les outputs (productivité, efficacité et risque 

économique) peuvent être analysés et chaque scénario expérimental pourra, de fait, être 

évalué en conséquence. 

Dans ce contexte, notre thèse se structurera donc autour de deux principaux axes, à savoir, 

d’une part, la télédétection et, d’autre part, la modélisation de la croissance des cultures. 

Le principal objectif lié à l’utilisation de la télédétection est de cartographier les parcelles 

de blé et d’en contrôler le cycle pour mettre en place une meilleure gestion de sa culture à 
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l’échelle nationale et à celle de la parcelle. La modélisation des cultures est, par conséquent, 

utile pour réduire les interventions sur le terrain. Les outputs, dans le cadre des simulations, 

aideront à identifier l’impact des pratiques agricoles (gestion et rotation des cultures) sur 

le rendement en grains de la production. En outre, ceci permettrait de prendre les meilleures 

décisions pour accroître l’efficacité de l’emploi des ressources et diminuer par ailleurs le 

risque économique pris par les agriculteurs pour, au final, garantir la durabilité de leurs 

systèmes de culture d’un point de vue économique.   

2. Etat de l’art 

2.1.Utilisation des satellites de télédétection pour la classification des cultures  

Ces dernières décennies, les données de télédétection ont été librement mises à disposition 

par le biais de diverses plateformes. On a notamment observé, entre 2013 et 2017, un boom 

dans le lancement de capteurs spatiaux de résolution modérée à élevée (10-30 m) 

(Nasrallah et al., 2018).  A titre d’exemples, on peut citer : Sentinel-1 A/B et Sentinel-2 

A/B dans le cadre du programme européen Copernicus (Drusch et al., 2012), Landsat 8 

pour le projet Landsat, à l’initiative conjointe de la Commission géologique des Etats-Unis 

et la NASA (National Aeronautics and Space Administration) (Yan and Roy, 2014). La 

mise à disposition gratuite de ces données ouvre la voie à des usages pertinents pour 

l’agriculture et l’environnement sur la base d’images spatio-temporelles à haute résolution 

et de techniques multi-sources de fusion de données (Gao et al., 2017; Lefebvre et al., 

2016). De fait, la classification de certaines cultures pourrait se faire en utilisant 

simplement des capteurs optiques. Cependant, il est nécessaire d’avoir recours à l’imagerie 

satellitaire multi-sources, si l’on veut capter les phases spécifiques de croissance d’une 

culture ainsi que son évolution saisonnière. En plus des limites météorologiques (nuages, 

par exemple), les données optiques ne sont pas capables de fournir les informations 

relatives aux phases de croissance (Kussul et al., 2017). 

Dans ce contexte, des études précédentes se sont focalisées sur la classification des cultures 

et des couvertures végétales des sols en utilisant les profils multi-temporels de divers 

Indices de Végétation (IV), tels que l’Indice de Végétation par Différence Normalisée 

(NDVI) (Kussul et al., 2017; Wardlow and Egbert, 2008a; Zhang and Xie, 2013). Des 

capteurs de basse résolution spatiale comme le Radiomètre Perfectionné à Très Haute 



Chapter 1: Résumé analytique 

24 

 

Résolution (AVHRR), avec une résolution spatiale de 1 km, et le Spectroradiomètre 

Imageur à Résolution Moyenne (MODIS), avec une résolution de 250 m, ont été largement 

utilisés pour répertorier différentes cultures hivernales et estivales  (blé, maïs, soja, etc.) 

(Chang et al., 2007; Lobell and Asner, 2004). Cependant, en raison de la basse résolution 

des capteurs, de nombreux pixels hétérogènes ont été mélangés—terrain agricole et non-

agricole / irrigué et non-irrigué et y compris parmi diverses variétés de cultures (Arvor et 

al., 2011; Wardlow et al., 2007; Wardlow and Egbert, 2008a). Dans l’utilisation des 

capteurs optiques (de différentes résolutions), de nombreux algorithmes ont été utilisés 

selon l’objectif de l’étude réalisée. Khatami et al. (2016) ont montré que la Machine à 

vecteurs de support (SVM) était la plus efficace pour la majeure partie des applications 

avec un taux de précision globale (OA) d’environ 75%. Une autre méthode avec presque 

la même précision (74% of OA), était fondée sur un classificateur basé sur un réseau 

neuronal (NN). Une autre approche populaire dans le domaine de la télédétection est 

l’approche basée sur les forêts d’arbres décisionnels (RF) (Gislason et al., 2006). 

Cependant, cette démarche requiert diverses variables afin de construire des arbres 

capables de répertorier de façon précise diverses classes. Par ailleurs, plusieurs approches 

basées sur les arbres décisionnels ont été proposées (Brown et al., 2013; McNairn et al., 

2014a), parmi lesquelles certaines sont dédiées à l’extraction d’informations liées au cycle 

phénologique des cultures (Nasrallah et al., 2018). 

Ces dernières années, les approches approfondies basées sur un ensemble de données, 

utilisées dans le cadre d’une classification multi-capteurs et multi-temporelle, se sont 

révélées être les plus populaires et les plus efficaces (Huang et al., 2013; Lavreniuk et al., 

2016). Ces méthodes ont largement surpassé l’approche SVM (Ishii et al., 2016; Lavreniuk 

et al., 2016). L’approche approfondie (DL)  est une démarche méthodologique puissante 

visant à résoudre des tâches en lien avec le traitement de l’imagerie (Lecun et al., 2015). 

Efficaces dans le traitement de l’imagerie radar et optique, les techniques  DL ont 

largement été utilisées ces dernières années en télédétection afin de déterminer les 

différents types de couverture terrestre (Kussul et al., 2017). 

De plus, la fusion multi-capteurs des données, qui décrit, sur le plan conceptuel, 

l’utilisation combinée des divers ensembles de données, a largement été utilisée. Ce 
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concept couvre les aspects multi-capteur, multi-temporel, multi-spectral ou 

multifréquence, multi-polarisation et/ou multi-échelle de l’analyse des images (Scheffler 

et al., 2017). Les méthodes utilisées pour la fusion d’images proviennent d’un grand 

nombre de domaines de recherche, tels que l’intelligence artificielle, la reconnaissance de 

forme, les approches statistiques, la théorie de la formation des galaxies, etc. (Zeng et al., 

2006). Différentes méthodes de fusion de données employées pour la classification ont été 

proposées, développées et appliquées dans la littérature récente. Ces démarches varient de 

la fusion d’images au niveau du pixel (Gibril et al., 2017; Zeng et al., 2006), à celle au 

niveau des caractéristiques (Khosravi et al., 2018; Zhou et al., 2017). Inglada et al. (2016) 

ont pris en compte l’usage combiné de l’imagerie optique (i.e., Landsat-8) et radar (i.e., 

Sentinel-1) pour mieux déterminer la classification des cultures précoces (i.e., tournesol, 

blé/orge, maïs, soja, pâturage, luzerne, sol nus, colza et zone sans production). La raison 

évidente qui pousse à fusionner les deux types d’imagerie est de créer une méthodologie 

“indépendante des conditions météorologiques”. L’approche proposée a démontré que le 

coefficient Kappa a atteint 73%, contre 66% (si l’on utilise Sentinel-1 seul) et 69% (si l’on 

utilise Landsat-8 seul). Dans le même contexte, McNairn et al. (2009) ont intégré à la fois 

l’imagerie optique et  celle du radar à synthèse d'ouverture (RSO). Les résultats ont montré 

que les images RSO seules n’étaient pas suffisantes pour cartographier de façon précise les 

cultures.  Lorsque seulement une ou deux images optiques sont disponibles, l’addition de 

deux images RSO améliore l’exactitude globale et celle de la classification des cultures 

correspondante pour atteindre au moins 85%. En outre, et ce plus récemment, les données 

sur l’utilisation des sols et la couverture végétale (Land Use/Land Cover) des zones 

humides obtenues à partir de systèmes avancés utilisant des algorithmes d’analyse basés 

uniquement sur Sentinel-2, ont débouché sur une exactitude globale de 90%, alors que, 

lorsque les données de Sentinel-1 étaient incluses, l’exactitude de la classification pouvait 

être améliorée mais pas de façon significative (Chatziantoniou et al., 2017). Par ailleurs, 

dans leurs travaux pour tester Sentinel-1 et Sentinel-2 dans la classification de cultures 

irriguées, Ferrant et al. (2017) ont prouvé que combiner les deux ensembles de données 

améliorait le degré de confiance pour ce qui concerne l’output “exactitude”. Néanmoins, 

les données fournies par Sentinel-1 étaient préférables car non impactées par les conditions 

météorologiques (temps nuageux).  
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2.2.Potentiel des données RSO dans la surveillance du cycle de croissance des 

cultures  

La télédétection peut aider à suivre le cycle de croissance des cultures en fournissant des 

informations précises sur le statut phénologique, le développement des végétaux et leur 

croissance. Dans des études consacrées au rendement et à la production des cultures (Baup 

et al., 2015; Duchemin et al., 2015), ces données, combinées à des modèles agro-

hydrologiques, représentent un outil efficace pour aborder ces questions à l’échelle locale, 

régionale et mondiale.  

A partir des données optiques et en explorant les liens existants entre propriétés optiques 

et photosynthétiques des feuilles des plantes, grâce aux indices de végétation (e.g. NDVI, 

l’index de végétation amélioré (EVI) et celui adapté aux sols (SAVI)), on obtient divers 

produits à valeur ajoutée. Les cartes dressant la typologie des cultures (Inglada et al., 2016) 

et les paramètres biophysiques à différents stades phénologiques (Doraiswamy et al., 2004; 

Quarmby et al., 1993) sont des exemples de l’utilisation fort répandue des données 

optiques. Même si celles-ci ont largement et fortement contribué à l’évaluation des 

paramètres biophysiques de la végétation, il n’en demeure pas moins vrai que leur 

utilisation dans le cas des végétations hautes ou bien très denses (avec de fortes valeurs de 

l’indice foliaire (LAI)) est souvent inadaptée, quand on observe une saturation de la 

réflectance, lorsque les niveaux de chlorophylle sont élevés (Arnold, 2006; Asner et al., 

2003; Asrar et al., 2010; Hatfield et al., 1985; Hobbs, 1995; Sellers, 1985). En outre, dans 

le cas des régions avec une couverture nuageuse en moyenne très élevée, telles que les 

zones tropicales, les données optiques sont rarement enregistrées. Ainsi, dans ce contexte, 

diverses études ont contrôlé la sensibilité des signaux RSO avec différentes longueurs 

d’onde (essentiellement les ondes L, C et X) selon les conditions de couverture végétale 

(Baghdadi et al., 2010; Bindlish and Barros, 2001; Fontanelli et al., 2013). 

En ce qui concerne les données radar à synthèse d’ouverture (RSO), des études ont porté  

sur des fréquences variables et des angles d’incidence pour interpréter les trajectoires 

temporelles des cultures en se basant sur la modélisation électromagnétique      (Cookmartin 
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et al., 2000; Picard and Toan, 2002) et/ou des données expérimentales  (Baghdadi et al., 

2009; McNairn et al., 2014b). La cartographie des différents types de culture grâce aux 

données RSO a pu ainsi être produite  (Deschamps et al., 2012; Skriver, 2012). Néanmoins, 

à la différence des données optiques, les RSO pour les applications agricoles n’ont pas été 

développées et étudiées en raison de la complexité et la difficulté d’interprétation. 

Recueillir des informations sur la dynamique des cultures (variation inter-saisonnière) a 

été limitée par le manque de disponibilité de satellites à résolution spatio-temporelle très 

fine, jusqu’au lancement de Sentinel-1 A en avril 2014 par l’Agence spatiale européenne 

(ASE), mettant à disposition l’ensemble de ses données (Inglada et al., 2016; Navarro et 

al., 2016) pour l’étude et la surveillance des cultures. Dans le même contexte, récemment,  

Veloso et al. (2017) ont utilisé les données NDVI recueillies par Sentinel-1et Sentinel-2 

pour comparer la variation temporelle de cultures d’hiver (i.e. Céréales et colza) et celle de 

cultures d’été (i.e. maïs, soja et tournesol). Globalement, l’étude a montré que les données 

RSO et optiques reproduisaient toutes les deux, de façon précise, les cycles de croissance 

des cultures et pouvaient être combinées pour obtenir des séries chronologiques sans faille, 

utilisées comme intrants dans des modèles agro-météorologiques. De plus, dans le même 

cadre, Bousbih et al. (2017) ont analysé l’utilisation potentielle des données RSO de 

Sentinel-1 pour évaluer les paramètres relatifs à la végétation des céréales (i.e. indice 

foliaire (LAI) et hauteur de végétation) dans les zones agricoles . Comme déjà mentionné, 

(Baghdadi et al., 2016), les données Sentinel-1 sont très sensibles à la variation de la teneur 

en humidité du sol, cependant,    cette sensibilité décroît avec l’augmentation de la 

croissance de la couverture végétale  (lorsque les indices NDVI et LAI augmentent). Une 

nouvelle étude (Wang et al., 2019) a analysé des données RSO (RADARSAT-2) pour 

tracer le statut phénologique de diverses cultures en utilisant les algorithmes de Forêts à 

arbres décisionnels (RF), le Réseau de neurones artificiels (ANN), l’Analyse de la 

régression par machine à vecteurs de support (SVMR) et l’algorithme des k plus proches 

voisins (k-NN). Il a été prouvé que c’est l’algorithme de Forêts à arbres décisionnels qui 

permet la meilleure récupération de données sur le statut phénologique (p-value < 0.01).  

Récemment, en combinant  les séries temporelles obtenues par les données optiques 

Sentinel et l’imagerie RSO afin d’identifier la couverture terrestre utilisée en hiver, Denize 
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et al. (2019) ont découvert que les données Sentinel-2 utilisées seules étaient meilleures 

que celles de Sentinel-1 seules pour établir cette classification hivernale. Cependant, si l’on 

combine ces deux ensembles de données, on obtient des résultats de grande précision. Dans 

le même contexte, Mandal et al. (2018) ont combiné des données optiques et l’imagerie 

RSO pour surveiller les étapes de tubérisation et de grossissement de la pomme de terre, 

qui sont parmi les phases les plus importantes de sa croissance.       Leurs résultats suggèrent 

que cette combinaison est capable de caractériser l’étape de tubérisation de la pomme de 

terre.  

2.3.Capacité à modéliser des cultures pour une gestion efficace  

Les productions céréalières, notamment le blé, bénéficient d’aides financières et techniques 

dans beaucoup de pays méditerranéens, notamment en zones arides et semi-arides  

(Nasrallah et al., 2018). En raison de leur importance pour la sécurité alimentaire et la lutte 

contre la faim, notamment pour leur richesse en calories et protéines, les politiques et les 

décideurs ont encouragé les agriculteurs à toujours produire davantage.  

Plusieurs méthodes et approches sont aujourd’hui proposées pour simuler la production du 

blé lorsqu’il est associé à plusieurs types de rotation. La modélisation spatiale et 

temporelle, ainsi que le suivi du cycle de croissance, sont souvent proposés pour définir et 

simuler des systèmes de culture innovants à base de blé.  Cette conception doit permettre 

aux agriculteurs d’avoir un revenu acceptable, réduire le risque en lien avec les aléas du 

climat et du marché et réduire au maximum les impacts environnementaux en lien avec la 

préservation des ressources naturelles (eau, sol), la réduction de la pollution diffuse 

(notamment en lien avec la fertilisation azotée) (Kahiluoto et al., 2019; Souissi et al., 2017).  

Les modèles de systèmes de culture sont souvent mobilisés pour simuler des pratiques 

agricoles innovantes notamment en lien avec la gestion de l’eau et de l’azote (Yin et al., 

2017). CropSyst, (Stockle et al., 2003, 1994), est un modèle de systèmes de culture 

pluriannuel qui a été largement utilisé pour simuler les effets de l’eau et de l’azote sur la 

production et la stabilité du rendement des cultures (y compris les céréales) (Abi Saab et 

al., 2015; Donatelli et al., 1997; Ferrer-Alegre et Stockle, 1999). Ces aspects, en plus de la 
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capacité du modèle à simuler les rotations, en font un outil très utile pour des simulations 

à grande échelle   (Confalonieri and Bechini, 2004). 

Dans ce contexte, au vu de la définition de la durabilité comme étant la capacité d’un 

système à maintenir sa productivité malgré les stress et les perturbation subis (Conway, 

1985), des études antérieures se sont focalisées sur l’analyse du risque lié à divers systèmes 

de culture (Hansen and Jones, 1996; Kaine and Tozer, 2005), pour leur capacité à être 

durable de point de vue économique et environnemental. Selon Sieling et al. (2005), la 

monoculture du blé est moins productif que le lorsque le blé est en rotation avec d’autres 

cultures. Les principales raisons tiennent à (1) l’augmentation des facteurs biotiques qui 

limitent le rendement  (Bennett et al., 2012) et (2)  au stress azoté provoqué par 

l’intensification du blé (Dalal et al., 2001; Sieling et al., 2005). Néanmoins, diverses études 

sur le terrain ont aussi montré  que  différentes rotations  de cultures peuvent jouer un rôle 

majeur dans l’amélioration de l’efficacité d’utilisation de l’azote (NUE) et ainsi réduire ses 

pertes... La disponibilité des ressources en eau et en azote fait partie des facteurs les plus 

limitant pour la croissance des cultures  (Mueller et al., 2012) en zones méditerranéennes 

arides. C’est pour cela que faire face à la demande alimentaire et à l’augmentation de la 

population nécessiteraient de garantir des meilleures efficiences d’eau et d’azote. Sans 

sous-estimer le rôle de la génétique des plantes, une gestion efficace de l’eau et de l’azote 

demeure un besoin crucial pour combler le fossé des rendements céréaliers  (Sinclair and 

Rufty, 2012). Par exemple, López-Bellido et al. (2012) ont montré que le fait d’introduire 

une légumineuse ou bien de laisser le terrain en jachère dans un système de rotation avec 

le blé peut être très  efficace en termes d’équilibre de la ressource en azote et en réponse 

aux besoins de la demande en blé, notamment dans les environnements semi-arides de la 

Méditerranée.  

La projection de difficultés économiques à venir est basée sur les outputs précédents   

(production et/ou profit). Ces derniers étaient impactés par des décisions relatives au type 

de rotation et à la gestion agricole. Ainsi, comme il est impossible de conduire des 

expériences à long terme sur le terrain, il est clair que les décisions relatives au type de 

rotation et aux pratiques agricoles requièrent de modéliser la performance des différents 
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types combinés de gestion et de rotation (Hansen and Jones, 1996; Pandey and Hardaker, 

1995). 

3. Problématique 

La problématique globale de cette thèse concerne l’évaluation du rôle de la télédétection   

et celui de la modélisation des cultures par le biais de la collecte de données fiables sur le 

blé afin de garantir la sécurité alimentaire et les objectifs du développement durable 

(SDGs). Les outputs attendus révèlent le potentiel lié à l’utilisation d’une approche intégrée 

possible à la fois à l’échelle régionale et à celle de la parcelle, visant à aider les décideurs 

et les utilisateurs dans des systèmes de production de blé durable.  

Cette thèse questionne initialement la capacité des satellites optiques et radar (i.e. Sentinel-

2 A/B et Sentinel-1 A/B) à classifier la distribution territoriale du blé et à surveiller son 

cycle de culture en identifiant les phases phénologiques les plus importantes, lorsque des 

interventions (pratiques agricoles et maîtrise de la rentabilité)   doivent être réalisées pour 

garantir le meilleur rendement.  

En outre, en raison du manque de politiques fiables dans les zones méditerranéennes   semi-

arides, il y a eu un déclin, d’une part,  de la productivité des systèmes de culture basés sur 

le blé et, d’autre part, de l’efficacité de l’utilisation des ressources.  Par ailleurs, la 

dégradation de la qualité des sols a conduit à la perte des sols profonds fertiles, générant 

ainsi une faible productivité et un risque économique fort devant être supporté par les 

agriculteurs. L’absence d’une méthodologie claire à l’échelle de la parcelle, favorisant  la 

localisation des différents systèmes de culture basés sur le blé, en lien avec la productivité 

(financière et nutritive), l’efficacité (utilisation performante de l’azote et de l’eau) autant 

qu’avec le risque économique, pourrait mettre en danger la sécurité alimentaire aussi bien 

qu’accroître la pauvreté et la faim.  

4. Démarche 

4.1.Approche générale 

Cette thèse est fondamentalement construite à la confluence de la télédétection et de la 

modélisation des cultures, pour finalement déboucher sur une approche intégrée afin 
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d’aider les décideurs et les utilisateurs finals. L’importance des données de la télédétection 

tient essentiellement au fait de fournir des images spatiales et temporelles à haute 

résolution, essentielles pour contrôler le cycle des cultures, déterminer leur distribution 

terrestre et temporelle, en plus d’estimer les zones correspondantes, facilitant la prise de 

décision pour ce qui concerne les interventions à prévoir, la gestion à mettre en place et le 

rendement en grains.  Dans le cadre de notre étude, la modélisation de la croissance des 

cultures sera appliquée à l’échelle de la parcelle. Ainsi, le modèle calibré CropSyst sera 

utilisé pour simuler la croissance du blé d’hiver dans différents systèmes de culture ( types 

de rotation et gestion) afin de garantir une haute performance, une haute efficacité dans 

l’utilisation des ressources et un faible risque économique.  

Notre travail vise à répondre à cette hypothèse au travers de différents chapitres.  Le 

deuxième chapitre présente le site d’étude sélectionné et la base de données utilisée. Le 

troisième analyse la capacité de la télédétection (i.e Sentinel-2) à répertorier la culture du 

blé d’hiver. Ensuite, dans le chapitre IV, nous nous concentrons sur le contrôle des 

parcelles de blé d’hiver répertoriées grâce aux données obtenues par Radar à synthèse 

d’ouverture (RSO) pour estimer les dates des principales phases phénologiques et de 

récolte. Le cinquième chapitre analyse les différents systèmes de culture utilisés dans notre 

zone d’étude en lien avec la productivité, l’efficacité et le risque économique encouru. 

Enfin, nous terminons par les conclusions et les perspectives de travail.  

4.2.Potentiel des données optiques (Sentinel-2) à répertorier les cultures de blé 

d’hiver  

Après avoir effectué une revue de la littérature sur les utilisations potentielles des satellites 

optiques pour cartographier le blé d’hiver, on peut voir que bon nombre d’études, depuis 

la fin du siècle dernier, ont expérimenté différents algorithmes pour en répertorier les 

cultures en se basant sur différents types de capteurs optiques. Cependant, plusieurs lacunes 

ont été constatées : (1) la classification du blé ne pouvait être établie avant la fin de sa 

campagne agricole (i.e., pendant la phase de maturation); (2) les résultats n’étaient pas 

validés sur différentes saisons agricoles (validation sur différentes années); et (3) la 

classification ne faisait pas de distinction entre des cultures céréalières similaires (e.g., orge 

et triticale). Ce chapitre résume les principaux résultats détaillés dans l’article publié dans 
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le journal Sensors avec pour titre: “A Novel Approach for Mapping Wheat Areas Using 

High Resolution Sentinel-2 Images" (“Une nouvelle approche pour cartographier les 

surfaces cultivées en blé à partir de l’imagerie optique haute résolution Sentinel-2”) 

(Nasrallah et al., 2018). 

Dans ce cadre, ce chapitre vise à examiner la capacité du nouveau capteur optique Sentinel-

2 à haute résolution spatiale (10 m) et temporelle (5 jours) à cartographier, de façon precise, 

les cultures de blé d’hiver dans la plaine de la Bekaa  au Liban en utilisant une nouvelle 

approche simple, dénommée “Approche Cartographique Simple et Efficace de la culture 

de Blé”  (SEWMA). Il s’agit d’un algorithme similaire à un arbre de décision  basé sur des 

valeurs NDVI, capable de surmonter les principaux défis consistant à répertorier de façon 

exhaustive et pertinente les cultures de blé avant la fin de leur cycle de récolte, d’être 

transférable sur d’autres années et de faire la distinction entre le blé, l’orge et le triticale. 

La mise en œuvre de la démarche SEWMA à l’échelle régionale et nationale permettrait de 

garantir des statistiques sur le blé fiables afin d’aider les décideurs et les gouvernements à 

mettre en place des politiques de planification et de gestion cohérentes  tout en préservant 

les ressources et les finances à la différence des enquêtes de terrain classiques.  

4.3.Potentiel des données RSO à identifier les principales phases phénologiques 

du blé et à prévoir leurs dates 

Ce chapitre est dédié aux données RSO obtenues grâce à Sentinel-1 pour évaluer la 

corrélation entre le signal rétrodiffusé et le blé d’hiver afin de cartographier et de prévoir 

les dates des plus importantes phases phénologiques de cette céréale, en vue de déterminer 

le bon moment où décideurs et professionnels doivent agir (e.g. stopper les processus 

d’irrigation et de fertilisation, lutte parasitaire, etc.). Outre la récolte, ces phases 

phénologiques correspondent à la germination, l’épiaison et le stade pâteux mou. Ce 

chapitre résume les principaux résultats détaillés dans l’article publié au journal Remote 

Sensing: “Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping" (“Les 

données Sentinel-1 au service de la cartographie et du suivi de la phénologie du blé 

d’hiver”) (Nasrallah et al., 2019). 
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Au départ, nous nous appuyons sur les données NDVI de Sentinel-2 en analysant les profils 

temporels du blé d’hiver. A partir de ces profils, nous évaluons ce que ces données peuvent 

fournir en terme de compréhension de son cycle phénologique et nous prouvons la 

nécessité d’utiliser les données RSO pour suivre et prévoir les dates des phases attendues. 

Ensuite, nous analysons le profil temporel du signal radar Sentinel-1 à la fois en 

polarisation VV (dB) et VH (dB) en plus du rapport VV/VH (dB) à deux angles d’incidence 

32°-34° and 43°-45°. En nous basant sur des observations in-situ des phases 

phénologiques, nous pouvons clairement observer celles qui ne peuvent être vues en 

utilisant les données NDVI de Sentinel-2, mais qui peuvent être observées avec les données 

RSO de Sentinel-1. Une approche automatisée est plus tard appliquée aux profils temporels 

du blé fournis par Sentinel-1, incluant les raccords gaussiens et de lissage requis pour 

évaluer les périodes de germination, d’épiaison, de stade pâteux et de récolte afin de 

déterminer, au final, les meilleures configurations S1 (en terme de polarisation et d’angle 

d’incidence) afin de répertorier chacune de ces phases. Ainsi, en utilisant ces informations, 

nous pouvons estimer et cartographier les périodes de germination (en utilisant le rapport 

VV/VH avec un angle d’incidence de 32°-34°), d’épiaison (en utilisant VV avec un angle 

d’incidence de 32°-34°) et de stade pâteux mou (en utilisant VH avec un angle d’incidence 

de 43°-45°) en plus de la récolte (en utilisant le rapport VV/VH avec un angle d’incidence 

de 32°-34).  

Une fois la répartition terrestre et la modélisation des phases phénologiques à l’échelle de 

la parcelle effectuées, il déviant possible d’aider les agriculteurs à prendre les meilleures 

décisions pour gérer leurs exploitations. Il est essentiel d’agir ainsi tout au long du cycle 

(e.g. arrêt de l’irrigation après l’épiaison), ainsi que d’avertir les décideurs, au stade pâteux 

mou, afin de préparer la récolte qui suit pour mieux maîtriser la manutention du produit.  

4.4.Modélisation des cultures pour évaluer la performance des systèmes de 

culture du blé et réduire de façon durable le risque économique dans la 

plaine de la Bekaa au Liban   

Ce chapitre aborde la valeur ajoutée liée au fait de promouvoir les systèmes de culture, 

aptes à réduire le risque économique supporté par les agriculteurs dans des zones 

méditerranéennes semi-arides. Néanmoins, ceux à promouvoir devraient soutenir les 
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politiques mises en place et portant sur la sécurité alimentaire. Cette partie résume les 

principaux résultats détaillés dans l’article soumis au European Journal of Agronomy, 

encore en attente de décision finale pour parution, “Performance of Wheat-Based Cropping 

Systems and Economic Risk Assessment in a Sub-dry Mediterranean Environment” 

(“Performance des systèmes de culture du blé et évaluation du risque économique dans un 

environnement sous-méditerranéen aride” ) (Nasrallah et al., 2019). 

Ici, nous calibrons et validons le modèle de simulation CropSyst sur notre site d’étude 

(plaine de la Bekaa au Liban) en utilisant les mesures in-situ obtenues pour les éléments 

qui nous intéressent (i.e. biomasse aérienne, teneur en eau du sol et celle de l’azote à la 

surface). Après calibrage et validation, nous configurons les scénarios de différents 

systèmes de culture déjà existants. Après simulation, en nous basant sur les outputs générés 

par le modèle, nous évaluons la productivité de chaque système de culture (i.e. production 

en protéines et profit net) ainsi que l’efficacité de l’utilisation des ressources (azote et eau). 

Finalement, nous évaluons la performance (productivité et efficacité) en prenant en compte 

le risque économique lié à une production relativement faible, à savoir, pour un agriculteur, 

celui de maintenir de façon viable un système de culture à long terme (i.e. 20 ans).  

Cette partie de la thèse fournira des conclusions pour déterminer si des compensations sont 

possibles à échelle réelle, par la mise en œuvre d’un système de culture axé sur la 

production de blé et de fèverole, un bien meilleur substitut au système de production en 

monoculture. Ce présent chapitre reflète la capacité d’un tel système à garantir la meilleure 

utilisation des ressources, un bon rendement (meilleur que le système blé-blé) en terme de 

production de protéines et de profit net avec, à la clé, un risque économique très faible 

permettant à l’agriculteur de maintenir son système de production sur un long terme, si les 

facteurs inhérents au rendement sont optimisés.  

5. Conclusion générale 

Les travaux réalisés dans cette thèse ont apporté de nouvelles connaissances sur le potentiel 

des données optiques et synthétiques de la bande C radar à ouverture (SAR) pour la 

classification du blé d'hiver et la surveillance de son cycle phénologique en zones 

méditerranéennes humides, semi-arides ou arides. . Par ailleurs, des simulations avec le 
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modèle de systèmes de culture CropSyst ont été réalisées  dont l’optique d’appuyer la prise 

de décisions sur le choix des systèmes de culture à base de blé à promouvoir dans un 

contexte semi-aride.  

Le blé est une culture capitale pour le Liban, plus de 600 000 tonnes sont importées chaque 

année (MoA, 2010). Néanmoins, ces quantités importées diffèrent d'une année à l'autre en 

fonction de la production interne annuelle. Il est donc crucial d'en estimer les quantités 

avant la fin de la saison de culture. Dans ce contexte, plusieurs méthodes sont proposées : 

enquêtes structurelles auprès des agriculteurs, modélisation biophysique en fonction des 

conditions climatiques, images satellitaires, etc. Dans cette étude, nous avons 

respectivement  proposé l'utilisation d'images optiques (Sentinel-2) et d'images radar 

(Sentinel-1) pour classer le blé d'hiver et surveiller sa phénologie. Cependant, au moins 3 

défis méthodologiques doivent être relevés : en premier lieu, la classification doit être 

effectuée avant la fin de la saison, il s’agit ensuite de valider les résultats sur différentes 

saisons avec des conditions climatiques différentes et enfin il faut aussi distinguer le blé 

des cultures céréalières similaires (p. ex. l'orge et le triticale). En outre, compte tenu de la 

complexité du signal radar en bande C, peu d'études ont analysé le comportement temporel 

des cultures en bande C et, au lieu de cela, l'IDNi d'origine optique a été utilisé pour 

comprendre l'ensemble du cycle des cultures. 

Les images satellitaires nous ont permis d'estimer les zones occupées par le blé et d’établir 

ainsi une estimation des productions. Cependant, cela reste insuffisant pour nous informer 

sur les systèmes de culture à base de blé à promouvoir en tenant compte de leur niveau de 

production, de leur efficience par rapport aux ressources mobilisées et du risque 

économique en lien avec leur productivité.  

Dans ce contexte, l'analyse de la performance des systèmes de culture à base de blé au 

niveau de la zone d'étude a soulevé deux défis méthodologiques majeurs : 

1- Identifier et définir les systèmes de culture à base de blé dominants en tenant compte de 

la diversité du précédent cultural (blé-blé, blé-pomme de terre, jachère-blé, légumineuse-

blé, etc.), des types de sol (en particulier en ce qui concerne leur capacité à retenir l’eau), 

le climat et les modes de gestion en lien avec l’irrigation et la fertilisation azotée.   
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2- Évaluer le comportement des différents systèmes de culture dominants à base de blé sur 

le plan de production, écologique et économique. Pour ce type d'évaluation, nous avons 

mobilisé le modèle « CropSyst » (Stockle et al., 2003) en plus du calcul d'un certain nombre 

d'indicateurs liés au risque économique, que l'agriculteur pouvait supporter en fonction de 

ses différentes pratiques agricoles. 

Au final, les objectifs de notre thèse étaient en priorité : d’utiliser des images satellitaires 

optiques (Sentinel-2) pour classifier  les récoltes de blé d'hiver dans la région de la Bekaa 

avec validation de l'année croisée, avant la fin de la saison de culture (récolte), d’étudier le 

potentiel des données SAR pour surveiller l'ensemble du cycle des cultures du blé et enfin 

d’évaluer la performance des systèmes de culture à base de blé existant dans la plaine de 

la Bekaa. 
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In this chapter a description of the study site and the database composed of in-situ 

measurements and spatial data (radar and optical) is presented. The study site is presented 

firstly, then the field measurement protocol is described (above ground biomass, soil 

moisture, total dry matter, canopy water content, height, leaf area and above ground 

nitrogen). Finally, SAR and optical acquisitions are also presented. 

1. Study site 

The Bekaa plain of Lebanon is located between 33°33’ N and 33°60’ N latitude, 35°39’ E 

and 36°14’ E longitude (Figure 1). The average area of the plain is around 860.25 Km² 

with an average elevation of 1000 above sea level. Similar to other plains in the southern 

Mediterranean (e.g. Plains of Sétif in Algeria (Hafsi et al., 2000), the Saïs plain in Morocco 

and the Medjerda plain of Tunisia (Burgers and Zoomers, 2014)), the Bekaa is 

characterized by a semi-arid Mediterranean climate and the average annual precipitation is 

around 600 mm. Agriculture is the main economic scheme at the area with the cultivation 

of field crops, orchards, annual and perennial plants.  

Field crops areas (e.g. cereals, vegetables and legumes) of individual farmers range from 

0.1 ha to up to 20 ha. 65% of the national cereal production is being produced in the Bekaa 

plain, while winter wheat areas in the plain correspond to 44% of the national wheat area, 

occupying zones ranging from 9000 to 12000 ha annually. 51% of potato, which is one of 

the largest tuberous crops cultivated in Lebanon, is present in the Bekaa plain as one of the 

most important cash crops. As for legumes, Bekaa is responsible for 20% of the national 

cultivation area, 16% of this area corresponds to Fava beans, occupying around 1548 ha in 

the plain (MoA, 2010). Wheat and fava beans are winter crops, as they are sown in 

November, while the potato is sown in March. As a whole, regarding irrigation 

management, 72% of the Bekaa cultivations are fully or supplementary irrigated. Even 

though Fava beans and winter wheat are grown through the winter season, however, they 

do receive supplementary irrigation during early spring to ensure better yield (80% of 

wheat in the Bekaa plain is supplementary irrigated). While potato, on the other hand, is 

fully irrigated (on weekly basis) from sowing to harvesting, ranging from 10 to100 mm per 

application, depending on the phenological phase (MoA, 2010). 
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Fertilization is supplied, especially nitrogen, as one of the most growth driving nutrient. 

Fertilization management differ among farmers, however, nitrogen is being supplied in its 

organic and inorganic forms. For wheat, farmers supply nitrogen of amounts up to 230 

Kg/ha in the form of ammonium sulfates in February. As for potato, nitrogen is applied 

before planting in the form of manure (around 250 Kg N/ha), in addition to a second 

application of synthetic nitrogen (around 100 Kg N/ha) after flowering occurs. Fava bean 

receives around 50 Kg N/ha in a form of synthetic nitrogen 60 days after sowing.  

Crop rotations do exist in the Bekaa plain. One of the most followed rotation type is wheat-

potato rotation as it is one of the most profitable rotations. However, poor farmers do 

cultivate wheat in a monoculture approach to benefit from the governmental support in 

buying their yield with relatively good prices. 23% of wheat cultivated lands in 2016 were 

also wheat cultivated in 2017 (Nasrallah et al., 2018). However, among suitable lands for 

agriculture, around 1500 ha are left as fallow annually (around 4% of the total exploited 

area).Figure 2 illustrates the crop calendar of the main field crops grown in the plain. 
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Figure 1 Location of Bekaa plain of Lebanon as well as Sentinel-2 (in orange) tile covering the study area 

(Landcover/Landuse NCRS-L, 2013). 
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Figure 2 Different crops calendars at the Bekaa plain (Adapted from USAID, 2012). 

Soils of the experimental site were both developed and deep. The available soil groups of 

were basically noncalcareous, clay Cambisols and Fluvisols with an average bulk density 

of 1.3 g/cm³. Gravimetric moisture content varied between 45.3% at field capacity and 

34.8% at wilting point. Thus the water holding capacity varied between 140 mm/m and 

223 mm/m (Darwish et al., 2006). 

2. In-situ database 

The in-situ measurements were done through field campaigns which took place over the 

period extended from 2016 to 2018. The in-situ database consists of recording of Global 

Positioning System (GPS) of various plots corresponding to diverse types of cultivations 

(2016, 2017 and 2018 seasons) in addition to in-situ measurements in 2018 cropping 

season, consisting of soil parameters, vegetation parameters, as well as field survey, 

conducted by distributing questionnaires among farmers, addressing various issues related 

to their practices. 
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The directly measured soil parameter corresponds to soil water content (Ws). The 

vegetation parameters correspond to above ground biomass (AGB), canopy water content 

(CWC), leaf area index (LAI), above ground nitrogen (AGN) and canopy height (CH). 

These soil and vegetation parameters were measured throughout the 2018 cropping season. 

More details about the in-situ database regarding the experimental design, replications, 

dates of measurements and values, are illustrated in Appendix A, as well as found in 

chapters three, four and five. 

2.1.Recording of global positioning system (GPS) 

As the most critical phenological phases of winter wheat lie between February and June, 

several field visits to record the coordinate of the reference plots, were conducted in this 

period throughout 2016 and 2017 seasons to serve winter wheat classification in these two 

seasons. In addition to winter wheat, other plots corresponding to cereals (i.e. barley and 

triticale) and different cultivations (i.e. potato, orchards, vineyards, alfalfa, bare soil) were 

also visited and their coordinates were recorded.  

2.2.Soil parameters 

2.2.1. Soil moisture 

The soil moisture was measured using a tube auger following the gravimetric water content 

method over 18 selected reference plots located in North, Mid and West Bekaa plain of 

Lebanon. In each plot, the soil moisture was measured for three pedological horizons 

(depth of each horizons ranges from 30 to 55 cm depending on the plot). The soil moisture 

measurement of each horizon is replicated three times and averaged within each reference 

plot. For each horizon (the depth of horizon Ap and B varied among plots), a sample of 

soil was taken out, sealed in a bag and transported in refrigerator to the lab to be measured 

fresh, and then put in the oven to dry at 100 °C until constant weight. For each winter wheat 

reference plot, the measurement was replicated three times randomly and then averaged at 

each depth on five phenological phases (germination, tillering, stem elongation, heading 

and maturation) (Reynolds, 1970). Figure 3 shows the way soil was sampled in the field. 



Chapter 2: Study site and database description 

43 

 

 

Figure 3 Soil sampling using a tube auger for Ws measurement. Photo taken in Ammiq, West Bekaa plain. 

The soil moisture content Ws  (% or g-1 / g-1) is calculated using the wet weight (Sf , soil 

weight after sampling) and the dry weight (Sd). The dry weight (Sd) is obtained by drying 

the soil sample taken at a temperature of 100° C for 24-48 hours until constant weight: 

%𝑊𝑠 = 100 × [
𝑆𝑓−𝑆𝑑

𝑆𝑑
]                                                    Eq. 1 

2.3.Vegetation parameters 

The vegetation parameters measured consist of Above Ground Biomass (AGB), Canopy 

Water Content (CWC), Leaf Area Index (LAI), Above Ground Nitrogen (AGN) and 

Canopy Height (CH). These parameters were measured on four dates corresponding to four 

phenological phases (tillering, stem elongation, heading and maturation) of winter wheat. 
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Each measurement is replicated three times and averaged within each reference winter 

wheat plot (18 plots). Each plot is selected based on the type of cultivar, previous crop, 

crop management and soil water holding capacity.  

2.3.1. Above Ground Biomass (AGB) 

Above ground biomass (AGB) was measured by a destructive method in four dates 

corresponding to four phenological phases of wheat (tillering, stem elongation, heading 

and maturation). Within each winter wheat reference plot, out of the total 18 selected 

reference plots, the measurement was replicated three times randomly, and then averaged 

over each plot. After weighing the fresh sample for each replication within each plot, the 

samples were quartered and a representative sample was oven dried at 70 °C until constant 

weight (Catchpole and Wheeler, 1992). Figure 4 shows the way the destructive above 

ground biomass sampling was done. 

 

Figure 4 Above ground biomass (AGB) sampling (destructive method). 

2.3.2. Canopy Water Content (CWC) 

After collecting and weighing above ground biomass samples for each replication within 

each reference winter wheat plot out of the total 18 selected reference plots, the samples 

were quartered and a representative sample was oven dried at 70 °C until constant weight 

(Catchpole and Wheeler, 1992). Figure 5a represents the quartering procedure and figure 
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5b demonstrates the samples in the oven. Similar to AGB, the measurement was done on 

four dates (tillering, stem elongation, heading and maturation). 

  

 

Figure 5 (a) Quartering and (b) biomass samples oven-drying at 70°. Procedure done for all replications in 

all winter wheat reference plots. 

2.3.3. Leaf Area Index (LAI) 

The leaf area index (LAI) represents the area of leaves per unit area on the ground (m² / 

m²). This index can be calculated by two methods, direct and indirect. The direct method 

is a destructive method of cutting the vegetation, and then measuring the surface of the 

leaves one by one using a planimeter. This technique is very difficult to achieve given the 

type of vegetation. 

The indirect method is to acquire nadir hemispherical photos (Figure 6) using a Fish Eye 

lens. Thus, in each of the 18 reference plot, three images were taken for each of the 

replicates, resulting in 9 images averaged for each reference plot. Then, these photos are 

treated with software developed at INRA Avignon (Can Eye) 

(http://www6.paca.inra.fr/can-eye), which allows to estimate the LAI. In Can Eye, the 

(a) (b) 
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processing of hemispherical photos to calculate LAI is based on the measure of fraction of 

holes in vegetation. In this thesis, the indirect method was considered to measure the LAI 

because it is more realistic for a type of vegetation such as wheat. LAI normally evolves 

rapidly over time. LAI values vary between 0.1 and 6 m² / m². For most plots, the LAI 

reaches 4 m² / m² approximately at flowering phase. The measurement was done on five 

dates (germination, tillering, stem elongation, heading and maturation). 

 

Figure 6 Hemispherical photo for the estimation of LAI. Photo acquired in the Bekaa plain of Lebanon. 

2.3.4. Above Ground Nitrogen (AGN) 

Above Ground Nitrogen (AGN) was measured following Kjeldahl‐N method (Rodriguez 

and Miller, 2000). In each of the 18 reference plot, on both tillering and heading phases 

(two dates), three biomass samples were taken. Crop N uptake was calculated from the 

corresponding data of dry matter production and N content. 

2.3.5. Canopy Height (CH) 

At each sampling date (on the four phenological phases dates), the canopy height of winter 

wheat was measured in each reference winter wheat plot (out of the 18 reference plots) 
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(Figure 7). The measurement was replicated three times in each plot and averaged. The 

canopy height (CH) was determined using a measuring tape.  

 

Figure 7 Canopy height (CH) measurements at the Bekaa plain using a measuring tape. 

2.4.Survey (questionnaires) 

In 2017 winter season, a survey was conducted within the area of interest (i.e. Bekaa plain 

of Lebanon). Through the distribution of the questionnaires, we targeted farmers, 

especially those involved in winter wheat cultivation. The profile, including the name, 

profession (if other than agriculture), telephone number, location, age and gender, was 

created. Further, the farmer was asked about the crop types they grow, management 

strategy (e.g. irrigation, fertilization…etc.), effect of climate and inputs on their 

production’s evolution, economic situation and expenses, and the roles of governmental 

and non-governmental entities. Figure 8 shows meeting with farmers to ask questions 

related to the questionnaire filling within the study area. 
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Figure 8 Interviewing winter wheat farmers at the Bekaa plain of Lebanon. 

More than 40 farmers, distributed within the area of interest, were interviewed. The output 

of the survey was used afterwards to: (1) understand the winter wheat-based cropping 

systems within the area of interest, including the rotation types and management, (2) 

calculate the expenses as well as the net profit of each of the systems and (3) evaluate the 

socio-economic situation of the farmers to better perceive and weigh the outputs. 

3. Remote sensing (satellite) database 

Within the framework of this thesis, satellite imageries (optical and radar) were utilized. 

The images downloaded cover two winter wheat cropping seasons (2016, 2017) for crop 

classification and one cropping season (2018) for phenological phases mapping. Each 

winter wheat cropping season extends from November to July, next year. More details 

about the remote sensing database regarding the number of images, dates of acquired 

images, calibrations and corrections, are found in chapters three, four and five. 

3.1.Optical images 

The optical data was acquired by Sentinel-2 satellites (2A and 2B). Sentinel-2 are the 

second generation Earth Observation (EO) satellites operated by the European Space 
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Agency (ESA) (Drusch et al., 2012). The launching of Sentinel-2A and Sentinel-2B was 

in June 2015 and March 2017 respectively, as an integral part of Europe’s Copernicus 

program aiming at independent and continued global observation capacities (Immitzer et 

al., 2016). Sentinel-2 offers a fine spectral, spatial and temporal resolutions (i.e., 13 bands 

ranging from 10 m to 60 m with a revisit time of five days). Datasets produced by this 

satellite could be downloaded free of charge from Europe’s Copernicus website 

(Https://scihub.copernicus.eu). 

For winter wheat classification in 2016 and 2017 cropping seasons, eight low cloud cover 

Sentinel-2 images (covering the main phenological phases) were downloaded for each of 

the cropping seasons, during the period between January and May, in each season (2016 

and 2017). This period is enough as the classification is executed before the end of the 

cropping cycle (July). 

For winter wheat monitoring, in the cropping season of 2018, fifty-eight images were 

downloaded from November, 2017 through August, 2018. These images were used to 

calculate the NDVI over the whole cropping season (before the start of the wheat cycle 

until a period after harvesting), in order to analyze the whole crop dynamic and to compare 

it with the SAR data. 

The images were initially downloaded at L1C (or L2A when available) level (Top of 

Atmosphere or TOA reflectance). The pre-processing of these Sentinel-2 images (L1C) 

including ortho-rectification, cloud removal (using cloud mask produced by 

Sen2Cor/SNAP), radiometric calibration and atmospheric correction, was produced using 

SNAP/Sentinel-2 toolbox. The output of the pre-processing corresponds to L2A (Bottom 

of Atmosphere or BOA reflectance). 

In this study, as we relied on the Normalized Difference Vegetation Index (NDVI) derived 

from Sentinel-2 satellite, only bands in the visible and infrared wavelengths were used, 

benefiting from their fine spatial resolution (i.e. 10 m). 

The Sentinel-2 tile, which is 100 x 100 km², covers the whole area of interest (Figure 1). 

Thus, acquiring only one image per date was enough for our study.  
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3.2.Radar images 

Synthetic Aperture Radar (SAR) C-band data were used for wheat crop monitoring in 2018 

cropping season. Thus, One hundred Sentinel-1A and Sentinel-1B images acquired at 

ascending overpass (~15:40 UT), are downloaded between November, 2017 and August, 

2018. The Sentinel-1 (S1) images are downloadable from the Copernicus website 

(https://scihub.copernicus.eu/dhus/#/home). These images are acquired at two incidence 

angles ranges, over the Bekaa plain of Lebanon: 32°-34° (50 images at ascending overpass) 

and 43°-45° (50 images at ascending overpass). The images were generated from the high-

resolution Level-1 Ground Range Detected (GRD) product with a spatial resolution of 10 

m × 10 m. The Sentinel-1 Toolbox (S1TBX), developed by the ESA (European Space 

Agency), was used to calibrate the S1 images. The calibration aims to convert the digital 

number values of S1 images into backscattering coefficients (σ◦) in a linear unit. 

For each reference plot, the mean backscattering coefficient (σ0) is calculated from each 

calibrated Sentinel-1 image by averaging all pixels values within that plot. Then, the VV, 

which is the most sensitive to soil (Beaudoin et al., 1990), the VH, which is more sensitive 

to vegetation (Balenzano et al., 2011; Brown et al., 2003), and the ratio VV/VH (dB) 

temporal-series were used in both incidence angles, in addition to the dates of the wheat 

key phenological phases observed in-situ. This is done in order to estimate the dates of 

these phases (germination, heading, soft dough and harvesting) in West Bekaa, in addition 

to harvesting in North Bekaa. To do so, the best configuration (polarization and incidence 

angle) is found for each phase and harvesting

https://scihub.copernicus.eu/dhus/#/home
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1. Objectives 

For the sake of crop classification, winter wheat in particular, numerous number of studies 

were conducted for this purpose (add references from paper). However, several 

shortcomings were observed: (1) wheat classification could not be carried out before the 

end of the cropping season (i.e., during maturation stage); (2) results have not been 

validated on different cropping seasons; and (3) they did not distinguish among similar 

vegetation index (VI)-annual profile cereal crops (e.g., barley and triticale). Coping with 

such obstacles was the technical objective of our work. Thus, our objectives in this paper 

are: i) achieving high accuracy classification before the end of the cropping cycle, ii) 

creating a portable method to other years and nevertheless iii) distinguishing wheat from 

barley and triticale. 

2. Study site 

The selected study area, the Bekaa plain, is located between 33°33’ N and 33°60’ N 

latitude, 35°39’ E and 36°14’ E longitude, covering an area of 860.25 km². The average 

elevation of the study area is around 1000 m above sea level (a.s.l.). The study area is 

characterized by a semi-arid (northern part) and dry-Mediterranean (southern part) climate 

and the average annual precipitation is around 600 mm (Darwish et al., 2008). 

Agriculture is the main economic activity in the Bekaa plain, including several field crops 

(e.g., wheat, potato, barley and alfalfa) of various field areas ranging from 0.1 ha to more 

than 20 ha. However, the wheat parcels predominate in the areas, corresponding to more 

than 65% of national cereal production (MoA, 2010). Wheat, as well as the other local 

cereals (i.e., barley and triticale), have a very similar phenological cycle as they are sown 

in November and harvested next year in June. In addition to the cereals, other spring and 

summer crops (e.g., potato, corn, vegetables and alfalfa), are being cultivated in the Bekaa 

plain.  

3. Datasets 

Two types of datasets were essential to conduct this study: two-year field data containing 

ground reference plots to train and validate our approach (2016 and 2017), and 

corresponding Sentinel-2 optical images.  
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Optical images were used to extract the NDVI temporal profiles, as it was the main key to 

eventually classify winter wheat at the Bekaa plain of Lebanon during the two years of 

study. 

4. Methods 

Our methodology proposed is a decision tree-like approach, relying basically on the 

Normalized Difference Vegetation Index (NDVI) values. Our proposed approach, named 

Simple and Effective Wheat Mapping Approach or SEWMA consists basically of two 

phases. The first phase selects what we call “candidate wheat segments”, which are wheat 

segments (subplots), in addition to some barley and triticale segments, while the output of 

the second phase is the wheat classified segments. SEWMA was applied on both 2016 and 

2017, and cross validation was performed to prove the robustness of SEWMA when trained 

with one year and applied on another. 

4.1.Satellite and ground data 

Eight Sentinel-2 images were used each year (i.e., 2016 and 2017) between January and 

May, covering the main phenological stages of wheat. The pre-processing of L1C (Top of 

Atmosphere or TOA reflectance) Sentinel-2 images, which includes ortho-rectification, 

cloud removal (using cloud mask produced by Sen2Cor/SNAP), radiometric calibration 

and atmospheric correction, was produced using SNAP/Sentinel-2 toolbox. The output of 

the pre-processing, corresponds to L2A (Bottom of Atmosphere or BOA reflectance). 

The NDVI afterwards was computed from the Red (ρRED) and Near Infrared (ρNIR) 

reflectance values, corresponding to Bands 4 and 8, respectively, as follows: 

𝑁𝐷𝑉𝐼 =  
ρNIR−ρRED

ρNIR+ρRED                                                    Eq. 1 

After obtaining the NDVI images, ranging from -1 to 1, cloud removal was applied to 

remove cloudy pixels, followed by mean-shift segmentation, in order to cluster the area of 

interest into homogeneous units (segments) for both years of study (i.e. 2016 and 2017). 

To collect our ground data, which were used to train “SEWMA”, field visits were carried 

out between February and June of the corresponding years (i.e., 2016 and 2017). Cereals 

plots (i.e., wheat, barley and triticale) as well as other cultivated plots (i.e., spring potato 

and spring vegetables, fruit trees, vineyards, and alfalfa) and bare soil areas were visited 



Chapter 3: Potential of optical data (Sentinel-2) in classifying winter wheat crop 

54 

 

and their coordinates were recorded as reference plots. These plots were fragmented 

according to the segmentation output of each year. 

4.2.SEWMA Generation 

The first phase discriminates wheat candidate segments (plots or sub-plots), which could 

be wheat, barley or triticale plantation, from other land-cover types. For this purpose, we 

extracted the NDVI temporal profile from the Sentinel-2 imageries for the three winter 

cereal crops (i.e., wheat, barley and triticale). Using the wheat NDVI values of each date 

of the eight dates, linear relationships were established between each date and the date that 

follows as the following: 

𝑁𝐷𝑉𝐼𝑆2(𝑡 + 1) = 𝑎 × 𝑁𝐷𝑉𝐼𝑆2(𝑡) + 𝑏                         Eq. 2 

where a  is the slope and b is the intercept. 

The parameters resulted from those linear relationships were used to simulate NDVI 

images that allowed further to select wheat candidate segments (end of the first phase). 

Hence, Equation 3 was applied: 

𝑁𝐷𝑉𝐼𝑆𝑖𝑚(𝑡 + 1) = 𝑎 ×  𝑁𝐷𝑉𝐼𝑆2(𝑡) + 𝑏                           Eq. 3 

By referring to the NDVI temporal profile of the three winter cereal crops and following 

the application of several conditions, the second phase enables the selection of wheat 

segments from the others plantations (i.e., barley and triticale). These conditions were 

basically related to the difference between Sentinel-2 NDVI and simulated NDVI, which 

was calculated for each segment, in each date of each year, as follows: 

𝐷𝑖𝑓𝑓 (𝑡) = [
𝑁𝐷𝑉𝐼𝑆𝑖𝑚(𝑡)−𝑁𝐷𝑉𝐼𝑆2(𝑡)

𝑁𝐷𝑉𝐼𝑆2(𝑡)
] × 100                         Eq. 4 

After the calculation of the differences between simulated NDVI and Sentinel-2 NDVI of 

each reference segment in each date of each year, we calculate both the average µ(t) and 

the standard deviation σ(t) of the obtained differences, for each date. In each year (2016 

and 2017), the highest sum of the mean and the standard deviation [µ(t) + nσ(t)] among the 

dates was chosen to represent the threshold of its corresponding year, where n is either 1, 

1.5 or 2 depending on the chosen threshold (1.5 was selected afterwards for giving the 

highest accuracy). For instance, when using the threshold µ(t) + 1.5σ(t), its value on date 
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4 in 2016 (6th of April) was the highest (27%), thus, 27% was assigned as a threshold 

produced by 2016 wheat reference segments. A criterion now has to be met; at least in 

three out of the first six dates (DOY 47 through 137 for 2016 and DOY 41 through 131 for 

2017), segmented areas should have a difference (Diff) between simulated NDVI and S2 

NDVI within the chosen threshold. If so, the segment is then considered as potential wheat 

cultivation. The later could also pinpoint at barley or triticale segments. The other segments 

are eliminated and not considered in the further processing steps. As a result, the output of 

the first phase is the identification of wheat candidate segments. 

In the execution of the second phase, we referred to the NDVI temporal profiles, and we 

found out that barley can be distinguished from wheat on DOY 117 in 2016 and DOY 131 

in 2017. While these periods generally highlight the anthesis (flowering) of wheat, the 

NDVI average value for barley segments is generally lower than the NDVI average value 

for wheat cultivation. As for triticale, it was found that a huge drop in the NDVI occurs by 

the end of the spring, due to the harvesting of triticale, allowing us to eliminate such 

parcels. Therefore, the output of the second phase is the identification of wheat segments 

relying on the NDVI real values. 

As we intended to train and validate SEWMA using different years, all reference wheat 

segments collected were used for the training and validation processes. When SEWMA 

was trained with 2016 reference segments, the application was on 2017 Sentinel-2 images, 

and when trained with 2017 reference segments, the application was on 2016 Sentinel-2 

images.  

5. Results 

The results of our work basically consist of wheat classification accuracy of both years 

cross validation, spatial distribution of wheat parcels and the areas of these parcels, in both 

years. 

By using the 2016 trained wheat approach classification on 2017, the overall accuracy 

reached 82.6%. When applying the 2017 trained wheat approach classification on 2016, 

the overall accuracy reached 87.0%. 
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According to the wheat spatial distribution, cultivation of wheat was denser in the south 

west of the plain comparing to the northern part, as water is more available, thus more 

compatible to irrigation management. Rotation is also visible as most farmers follow the 

traditional potato-wheat rotation. However, A number of plots have witnessed wheat 

cultivation in the two consecutive years (2016 and 2017) occupying up to 28% of plots 

cultivated in monoculture each year. 

Concerning the wheat areas, results show that there was a decrease from 11,063 ± 1309 ha 

in 2016 to 7605 ± 1184 in 2017. The wheat cultivated areas in the Bekaa plain estimated 

based on the reference sample data, with 95% confidence interval according to (Olofsson 

et al., 2014). This area is densely distributed in the center and to the southern part of the 

study site. 

6. Discussion 

Our overall accuracies were satisfactory, similar to other previous studies, aiming at 

mapping winter crops (Atzberger and Rembold, 2013; Benedetti et al., 1994; Wardlow et 

al., 2007), especially early-season classification (Skakun et al., 2017b; Vaudour et al., 

2015). Discriminating winter wheat from other winter cereal crops especially barley, as 

proposed by our approach is highly challenging, as it was shown in a previous study, where 

accuracy dropped to below 70% when cereals were ungrouped and winter wheat was 

discriminated from barley (Vaudour et al., 2015). 

The underestimation of wheat classification that occurred when applying 2016 linear 

relationships on 2017 was mainly for two reasons. First, since the threshold was produced 

by 2016 ground truth data, few wheat segments did not cross the first phase of the approach, 

as they exceeded the threshold set in more than 3 dates. The difference in climate among 

the two years (2016 and 2017) was reflected via the NDVI profiles, hence these few 

segments were not considered as candidate segments and eliminated after the first phase. 

Second, during the second phase of SEWMA, the mean NDVI of reference barley segments 

plus the standard deviation [µ + σ] at the anthesis period (DOY 117 of 2016) used to 

designate barley segments, was around 0.84. Thereby, some wheat segments were 

removed. This elimination is mainly related to the fact that the year 2017 was a cold and 

wet year, and since the season of wheat was longer than that in 2016, the NDVI of some 
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wheat segments in 2017 was lower than that in 2016 during anthesis (DOY 117/2016 and 

131/2017). 

The difference in accuracy among both years (i.e., 2016 and 2017) is attributable to several 

reasons: (1) different number of training segments (plots or sub-plots); (2) different 

climatic conditions among the two years and (3) slightly different shift in the dates of 

available Sentinel-2 images. 

Regarding the wheat spatial distribution, the dominance of parcels at the western-southern 

part of the plain is due to the higher availability of water in a cooler climate. On the other 

hand, at the upper part of the plain, farmers generally prefer to cultivate barley or other 

crops that do not require any supplementary irrigation. The decrease in areas among the 

two years is related to the rotation system (i.e., simple potato-wheat rotation) applied by 

most farmers in the plain. In addition, farmers are discouraged to plant wheat due to the 

unclear subsidizing policy followed by the government, in addition to other constraints 

(e.g. Syrian war and wheat grain importation). 

7. Conclusions, strengths, limitations and future directions 

The proposed method, Simple and Effective Wheat Mapping Approach (SEWMA), has 

proven to be successful in predicting wheat spatial distribution in the Bekaa plain of 

Lebanon for the years 2016 and 2017. SEWMA appears to have several strong points; (1) 

it only requires limited number of open access satellite imageries datasets in one single 

season for executing the classification, an option highly crucial in a developing country 

such as Lebanon; (2) it discriminates wheat from other similar winter cereals (i.e., barley 

and triticale) with only few field campaigns required; (3) it produces accurate (87%) early 

outputs in an automated way, thus saving resources and time.  

Even though the application of SEWMA is technically simple and easy to implement, 

however, it is site dependent and some requirements have to be met. For instance, 

replicating SEWMA in different regions may be affected by climate, farming conditions, 

agricultural practices and crop calendar. Concerning this, avoiding field visits in a new 

study site may result in critical drawbacks and unsatisfactory results. In the second phase 

of SEWMA, irrigation practices were very important to eliminate barley segments. Thus, 
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wheat plots that are not irrigated due to shortage in water, could be susceptible to 

elimination, in addition to barley plots, during the second phase of SEWMA. 

As other previous studies have proven, the usage of both optical and radar images would 

improve the classification, especially when pilot areas are covered with clouds (Inglada et 

al., 2016; McNairn et al., 2009). The performance of SEWMA was tested on the Bekaa 

plain of Lebanon, which is a semi-arid climatic region. Hence, for future studies, including 

other climatic regions and enlarging the sampling data would generate better outputs. 

However, with a total accuracy of 87%, our proposed approach could be implemented 

across the Bekaa region and in similar climatic areas. 
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Abstract: Global wheat production reached 754.8 million tons in 2017, according to the 

FAO database. While wheat is considered as a staple food for many populations across 

the globe, mapping wheat could be an effective tool to achieve the SDG2 sustainable 

development goal—End Hunger and Secure Food Security. In Lebanon, this crop is 

supported financially, and sometimes technically, by the Lebanese government. However, 

there is a lack of statistical databases, at both national and regional scales, as well as 

critical information much needed in the subsidy and compensation system. In this context, 

this study proposes an innovative approach, named Simple and Effective Wheat Mapping 

Approach (SEWMA), to map the winter wheat areas grown in the Bekaa plain, the primary 

wheat production area in Lebanon, in the years of 2016 and 2017. The proposed 

methodology is a tree-like approach relying on the Normalized Difference Vegetation 

Index (NDVI) values of four-month period that coincides with several phenological stages 

of wheat (i.e., tillering, stem extension, heading, flowering and ripening). The usage of 

the freely available Sentinel-2 imageries, with a high spatial (10 m) and temporal (5 days) 

resolutions, was necessary, particularly due to the small sized and overlapped plots 

encountered in the study area. Concerning the wheat areas, results show that there was a 

decrease from 11,063 ± 1309 ha in 2016 to 7605 ± 1184 in 2017. When SEWMA was 

applied using 2016 ground truth data, the overall accuracy reached 87.0% on 2017 data, 

whereas, when implemented using 2017 ground truth data, the overall accuracy was 
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82.6% on 2016 data. The novelty resides in executing early classification output (up to 

six weeks before harvest) as well as distinguishing wheat from other winter cereal crops 

with similar NDVI yearly profiles (i.e., barley and triticale). SEWMA offers a simple, yet 

effective and budget-saving approach providing early-season classification information, 

very crucial to decision support systems and the Lebanese government concerning, but 

not limited to, food production, trade, management and agricultural financial support. 

Keywords: wheat; crop classification; Sentinel-2; NDVI; tree-like approach; Lebanon 

 

1.  Introduction 

With the steady increase of population and food demands in Lebanon (Qadir et al., 

2007), particularly following the massive influx of Syrian refugees since 2011, land 

degradation and mismanagement threaten food security. The latter is jeopardized as well 

by the partial and intermittent agricultural census, held once every 5–8 years depending on 

field questionnaires and farmers’ estimations. Even the national land cover/land use map, 

which is updated approximately every five years, contains no crop-specific classification. 

However, according to assumptions in 2010, the winter wheat cereal, supported by the 

Lebanese government as a strategic crop for food security in the country, occupied around 

44% of the total field crop-cultivated land (MoA, 2010).  

A regularly updated agricultural map, beginning with the identification of wheat 

parcels through remote sensing imageries, is then highly crucial for the Lebanese state and 

national statistics. These crop maps can assist decision-makers and end-users in identifying 

the cropped areas, estimating biomass production, water productivity, irrigation needs and 

scheduling, as well as defining management strategies. But more importantly, deriving 

statistics for annual cash crops to support sustainable national food security policies is vital 

(Beziat et al., 2013; Kussul et al., 2017; Thenkabail and Wu, 2012; Xiao et al., 2014). 

In this context, previous studies have focused on generating the annual reference 

temporal profile using diverse Vegetation Indices (VI), such as the commonly known 

Normalized Difference Vegetation Index (NDVI) (Do Bendini et al., 2016; Kussul et al., 

2017; Wardlow and Egbert, 2008b; Zhang and Xie, 2013). Low-resolution sensors such as 
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the Advanced Very High Resolution Radiometer (AVHRR), with a spatial resolution of 1 

km, and the Moderate Resolution Imaging Spectroradiometer (MODIS), with a spatial 

resolution of 250 m, were largely used to classify several crops such as corn and soybeans 

(Chang et al., 2007; Lobell and Asner, 2004). Results showed high accuracy (~80%) in 

terms of differentiation between major crops’ type (e.g., rice, corn, millet and cotton) 

(Brown et al., 2013; Lobell and Asner, 2004). However, and due to the low spatial 

resolution sensors, many heterogeneous pixels were mixed—crop/non crop, irrigated/non-

irrigated, and even between different crops’ type (Arvor et al., 2011; Wardlow et al., 2007; 

Wardlow and Egbert, 2008b). 

The usage of sensors with higher spatial and temporal resolutions was then needed. 

Both (Asgarian et al., 2016; Hao et al., 2016) applied a decision tree algorithm to Landsat-

8 imageries, with a spatial resolution of 30 m. Their approaches yielded high accuracy in 

mapping the available main crops (i.e., wheat, alfalfa, barley rice, trees, vegetables and 

potato). Another study (Aggarwal et al., 2014) has showed that the inclusion of Gaussian 

kernel soft classifier, with Euclidean Norm in Possibilistic c-Means (KPCM), has been 

more robust in identification of the wheat crop when using Landsat 8 imageries. As for the 

temporal data, imageries corresponding to tillering, stem extension, heading and ripening 

stages of wheat crop would be the best combination to reach a highly accurate classification 

(Aggarwal et al., 2014). 

Another study (Inglada et al., 2016) has considered the usage of both optical (i.e., 

Landsat-8) and radar (i.e., Sentinel-1 SAR) satellite imageries to improve early crop type 

(i.e., sunflower, wheat/barley, corn, soybean, grassland, alfalfa, bare soil, rapeseed and no-

crop) classification. The obvious reason of merging the two imageries’ types is to create a 

“weather-independent” methodology. The proposed approach showed that the Kappa value 

increased to 73%, from 66% and 69%, when using Sentinel-1 and Landsat-8 solely, 

respectively. In the same context, McNairn et al. (McNairn et al., 2009) integrated both 

optical and Synthetic Aperture Radar (SAR) imageries. Results showed that SAR images 

alone were not enough to accurately map crops. When only one or two optical images are 

available, the addition of two SAR images will improve overall accuracies and will boost 

individual crop classification matching to reach at least 85%. 
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Through the first experience with Sentinel-2 data for crop and tree species 

classification in central Europe, Immitzer et al. (Immitzer et al., 2016) employed a 

supervised random forest classifier (RF). They successfully mapped six summer crop 

species (i.e., carrots, maize, soya, onions, sugar beet and sunflower), in addition to winter 

crops and bare soil in lower Austria, as well as seven different deciduous and coniferous 

trees in Germany. Cross-validated overall accuracies ranged between 65% (tree species) 

and 76% (crop types). However, the study has also revealed the great potential of the red-

edge and shortwave infrared bands for mapping vegetation.  

As saving resources has been having great attention recently, some studies have 

focused on the cross-year validation. For instance, in the central United States, soybean 

and corn were mapped using Landsat imagery with cross year validation (Zhong et al., 

2014). Results have showed an average overall accuracy of 82%. The proposed approach 

required several sets of input variables (i.e., traditional spectral features at imaging dates, 

phenological metrics derived from EVI time series, spectral features and vegetation indices 

interpolated at phenological transition dates, and accumulated temperature during 

phenological stages). Thus, with high complexity of data sources, the implementation of 

such approach could be challenging. 

Early crop mapping has been the focus of recent work, especially when coupled with 

remotely-sensed data. In 2015, a study was conducted in France to assess the contribution 

of very high spatial resolution (VHSR) Pléiades images to early season crop identification. 

The validation of the approach showed a drop in overall accuracy from 79%, when 

considering winter cereals as a composite class, to 69% when discriminating among winter 

wheat and winter barley (Vaudour et al., 2015). In a recent study (Skakun et al., 2017b), 

MODIS NDVI time-series data, crop mask and growing degree days were used to map 

winter crops in an automated way up to two months prior to harvesting period. Their results 

have showed accuracy exceeding 90%. While it is highly important to execute early season 

mapping, further crop-specific classification, with a high overall accuracy, is much needed 

at regional and national scale. 

In the abovementioned studies several shortcomings were observed: (1) wheat 

classification could not be carried out before the end of the cropping season (i.e., during 

maturation stage); (2) results have not been validated on different cropping seasons; and 
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(3) they did not distinguish among similar VI-annual profile cereal crops (e.g., barley and 

triticale). In this context, this paper will be examining the ability of the new high resolution 

optical sensor Sentinel-2 with 10 m spatial and 5 days temporal resolutions, to accurately 

map winter wheat in the Bekaa plain of Lebanon using a novel, yet simple classification 

approach, named Simple and Effective Wheat Mapping Approach or SEWMA. It is a 

decision tree-like algorithm, based on the NDVI values that is able to overcome the major 

challenges of achieving high accuracy classification before the end of the cropping cycle, 

could be portable to other years, and can distinguish wheat from barley and triticale. The 

implementation of SEWMA approach at regional/national scale shall enable an adequate 

planning and managements by decision makers and governments while saving on resources 

and monetary values for field based statistics. Section 2 presents the study site and the 

cropping calendar, followed by Section 3 which describes the database and materials used. 

Section 4 describes the methodology of the proposed approach. The results are shown in 

Section 4. Section 5 presents a discussion of the important results, followed by a 

conclusion. 

2. Study area  

The selected study area, the Bekaa plain, is located between 33°33′ N and 33°60′ N 

latitude, 35°39′ E and 36°14′ E longitude (Figure 1), covering an area of 860.25 km2. The 

plain lies between two natural units having very steep slopes; the eastern slopes of the 

Mount-Lebanon Mountains (western unit) and the Western slopes of the Anti-Lebanon 

Mountains (eastern unit). The average elevation of the study area is around 1000 m above 

sea level (a.s.l.). The study area is characterized by a semi-arid (northern part) and dry-

Mediterranean (southern part) climate and the average annual precipitation is around 600 

mm (Darwish et al., 2008). 

Agriculture is the main economic activity in the Bekaa plain, including several field 

crops (e.g., wheat, potato, barley and alfalfa) of various field areas ranging from 0.1 ha to 

more than 20 ha. However, the wheat parcels predominate in the areas, corresponding to 

more than 65% of national cereal production (MoA, 2010). Wheat, as well as the other 

local cereals (i.e., barley and triticale), have a very similar phenological cycle as they are 

sown in November and harvested next year in June. In addition to the cereals, other spring 

and summer crops (e.g., potato, corn, vegetables and alfalfa), are being cultivated in the 



Chapter 3: Potential of optical data (Sentinel-2) in classifying winter wheat crop 

65 

 

Bekaa plain. Figure 2 illustrates the crop calendar of the main field crops grown in the 

plain.  

 
Figure 1 Location of Bekaa plain of Lebanon as well as Sentinel-2 (in orange) tile covering the study area 

(Landcover/Landuse NCRS-L, 2013). 
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Figure 2 Different crops calendars at the Bekaa plain (adopted from USAID (USAID, 2012)). 

3. Material and methods 

3.1.Datasets and preprocessing 

Two types of datasets were essential to conduct this study: two-year field data 

containing ground reference plots to train and validate our approach, and corresponding 

Sentinel-2 imageries (each tile is of 100 × 100 km2). These datasets were used to extract 

the NDVI temporal profile, as it was the main key to eventually classify winter wheat at 

the Bekaa plain of Lebanon during the two years of study (i.e., 2016 and 2017). Figure 3 

represents a flowchart summarizing the preparation work, whose output will be used as 

input for our proposed approach. 
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Figure 3 Simplified flowchart for the preparation of SEWMA NDVI temporal profiles. 

3.1.1. Satellite data 

Sentinel-2 is the second generation Earth Observation (EO) satellite operated by the 

European Space Agency (ESA) (Drusch et al., 2012). The launching of Sentinel-2A and 

Sentinel-2B was in June 2015 and March 2017 respectively, as an integral part of Europe’s 

Copernicus program aiming at independent and continued global observation capacities 

(Immitzer et al., 2016). Sentinel-2 offers a fine spectral, spatial and temporal resolutions 

(i.e., 13 bands ranging from 10 m to 60 m with a revisit time of five days). Datasets 

produced by this satellite could be downloaded free of charge from Europe’s Copernicus 

website (Https://scihub.copernicus.eu, n.d.). Eight Sentinel-2 images were used each year 

(i.e., 2016 and 2017) between January and May (Table 1), as these images cover the main 

phenological stages. The pre-processing of L1C (Top of Atmosphere or TOA reflectance) 

Sentinel-2 images, which includes ortho-rectification, cloud removal (using cloud mask 

produced by Sen2Cor/SNAP), radiometric calibration and atmospheric correction, was 

produced using SNAP/Sentinel-2 toolbox. The output of the pre-processing, corresponds 

to L2A (Bottom of Atmosphere or BOA reflectance). 
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Table 1 Day of Year (DOY) of Sentinel-2 images used for both 2016 and 2017 cropping seasons. 

Sentinel-2 Image Number 1 2 3 4 5 6 7 8 

2016 DOY 17 47 67 87 97 107 117 137 

2017 DOY 11 41 51 71 101 111 131 151 

The Normalized Difference Vegetation Index (NDVI), which ranges from −1 to 1 is 

successful in predicting photosynthetic activity as it is computed from the Red (ρRED) and 

Near Infrared (ρNIR) reflectance values, corresponding to Bands 4 and 8, respectively, as 

follows: 

NDVI =
NIR−RED

NIR+RED
                                                Eq. 1 

There is a strong correlation between the NDVI ratio and above ground green biomass 

(Tao Hou, 2015). In other words, as green biomass increases, NDVI reflectance tends to 

get closer to 1, thus, spectral measurements are strongly related to the amount of leafy 

biomass (Gates et al., 1965; Turner et al., 1999). 

As in our case, during winter, the wheat canopy tends to go through a dormancy stage 

where development is paused until reaching a certain Growth Degree Days (Law and 

Waring, 1994). During this period, NDVI normally does not exceed 0.3. After stem 

elongation and booting stage are initiated, NDVI comes closer to 1 (Haboudane et al., 

2004). 

While applying the mean shift segmentation (post cloud removal) to the study area for 

each year, the area of interest was clustered into homogeneous units (segments) in each 

year (2016 and 2017). For both years, eight NDVI images (Table 1) were stacked together 

and used as an input to the mean-shift algorithm, to produce unique homogeneous units’ 

map (segments) for each year (i.e., 2016 and 2017). The mean-shift segmentation 

(Kaichang Di, Jue Wang, Ruijin Ma et al., 2003; Tao et al., 2007) is a widely used 

segmentation approach (Fukunaga and Hostetler, 1975), firstly proposed by (OTB, 2014). 

It relies basically on spatial and range radii and was executed in this paper using the open 

source software QGIS (“QGIS Development Team,” 2018). The segmentation parameters 

are: Spatial radius = 10 pixels and NDVI range radius = 0.1. The reason behind setting 

such parameters is, first, since the resolution of Sentine-2 is 10 m, then ten pixels are 1000 

m2, which is the minimum cultivated area by farmers in the studied region; second, since 
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the variability in NDVI within our reference plots over the eight dates used did not exceed 

0.1 as NDVI value, a 0.1 range radius was used. 

3.1.2. Ground data 

Field visits were carried out between February and June of the corresponding years 

(i.e., 2016 and 2017), as this period covers the most critical wheat phenological stages 

needed for classification. Cereals plots (i.e., wheat, barley and triticale) as well as other 

cultivated plots (i.e., spring potato and spring vegetables, fruit trees, vineyards, and alfalfa) 

and bare soil areas were visited and their coordinates were recorded as reference plots 

(Table 2). These plots were fragmented according to the segmentation output (produced 

earlier) of each year and used for training and validation processes. 

Table 2 Number of segmented plots visited per cultivations in 2016 and 2017. 

Crop 2016 2017 

Wheat 216 348 

Barley 59 13 

Triticale 64 17 

Spring potato 111 117 

Spring vegetables 14 20 

Fruit trees 157 190 

Vineyards 29 33 

Alfalfa 11 23 

Bare soil 7 8 

Total 668 769 

3.1.3. Temporal profile analysis 

In order to produce the NDVI-temporal profiles for the main cultivations in the study 

area, the mean and the standard deviation of the NDVI images were calculated at segment 

level. 

The behaviors of the reflectance of the main cereals (i.e., wheat, barley and triticale), 

spring potato and spring vegetables in the NIR, Red and NDVI are presented in the Results 

section (Section 4.1). 

3.2.SEWMA Generation 

The main objective of this study is to map the spatial distribution of the wheat 

segments four to six weeks prior to the harvesting period for both 2016 and 2017 cropping 
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seasons. The methodology proposed consists basically of two phases. The first phase 

discriminates wheat candidate segments (plots or sub-plots), which could be wheat, barley 

or triticale plantation, from other land-cover types. For this purpose, we extracted the 

NDVI temporal profile from the Sentinel-2 imageries for the three winter cereal crops (i.e., 

wheat, barley and triticale). Using the wheat NDVI values of each date of the eight dates, 

linear relationships were established between each date and the date that follows. The 

parameters resulted from those linear relationships were used to simulate NDVI images 

that allowed further to select wheat candidate segments (end of the first phase). 

By referring to the NDVI temporal profile of the three winter cereal crops and 

following the application of several conditions, the second phase enables the selection of 

wheat segments from the others plantations (i.e., barley and triticale). 

As we intended to train and validate SEWMA using different years, all reference wheat 

segments collected (Table 2) were used for the training and validation processes. When 

SEWMA was trained with 2016 reference segments, the application was on 2017 Sentinel-

2 (S2) images, and when trained with 2017 reference segments, the application was on 

2016 Sentinel-2 (S2) images. Thus, 348 wheat segments were used to train year 2016, and 

216 wheat segments were used to train year 2017. In the coming sections, we will be 

presenting a detailed description of each phase. A simplified flowchart of the methodology 

is illustrated in Figure 4 below. 

3.2.1. Identification of wheat candidate segments: First phase 

Using the Sentinel-2 mean NDVI per wheat segment values, identified from the field 

campaigns (reference wheat segments) in 2016 and 2017, linear relationships of their 

NDVI values were established for each year between each two consecutive dates. In this 

study, we have used linear fitting because of the short-term data used. Moreover, in terms 

of NDVI real value, the development of wheat has proven to be predicted between two 

dates (t and t + 1) in a linear manner. This predictability was particularly essential because 

different wheat plots present different NDVI values through their development. With the 

usage of these relationships on different dates, segments could be eventually selected as 

wheat candidate segments (i.e., wheat, barley or triticale). The reference wheat NDVI 

linear relationship between each two consecutive dates (t and t + 1) is defined by: 
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𝑁𝐷𝑉𝐼𝑆2(𝑡 + 1) = a × 𝑁𝐷𝑉𝐼𝑆2(𝑡) + b                              Eq. 2 

By using the linear relationships (slopes “a” and interceptions “b”), we simulate NDVI 

images (𝑁𝐷𝑉𝐼𝑆𝑖𝑚) for each date of the Sentinel-2 (𝑁𝐷𝑉𝐼𝑆2) images. The slopes and 

interceptions deduced from the already produced linear relationships for each date used, are 

listed in the Results (Section 4.2). 

To simulate NDVI images for the dates of 2016, “a” and “b” coefficients (Section 4.2) 

deduced from linear relationships (Equation (2)) of 2017 Sentinel-2 NDVI images were 

used, in addition to the Sentinel-2 NDVI images of 2016. Same is applied when simulating 

NDVI images for the dates of 2017. For each wheat reference segment, the following 

equation is applied: 

𝑁𝐷𝑉𝐼𝑠𝑖𝑚(𝑡 + 1) = a × 𝑁𝐷𝑉𝐼𝑆2(𝑡) + b                              Eq. 3 

However, with a minimum coefficient of determination (R2) of 0.52, the application 

of these linear relationships could under- or over-estimate the probability of a segment 

being a candidate wheat plantation. In this context, the addition of a margin of error is 

required. After the production of the simulated NDVI images (𝑁𝐷𝑉𝐼𝑆𝑖𝑚), we calculate the 

average Sentinel-2 NDVI (𝑁𝐷𝑉𝐼𝑆2) as well as the average simulated NDVI (𝑁𝐷𝑉𝐼𝑆𝑖𝑚) 

for each reference segment of each date in both years of study. Then, the difference 

between the average simulated NDVI (𝑁𝐷𝑉𝐼𝑆𝑖𝑚) value and the average Sentinel-2 NDVI 

(𝑁𝐷𝑉𝐼𝑆2) value was calculated for each reference segment in all dates of both years. 
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Figure 4 SEWMA (Simple and Effective Wheat Mapping Approach) simplified flowchart. 

For each reference segment, the difference (Diff) is produced between simulated 

NDVI and S2 NDVI values, in each date of each year, as follows: 

𝐷𝑖𝑓𝑓(𝑡) = [
𝑁𝐷𝑉𝐼𝑆𝑖𝑚(𝑡)−𝑁𝐷𝑉𝐼𝑆2(𝑡)

𝑁𝐷𝑉𝐼𝑆2(𝑡)
] × 100                              Eq. 4 
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After the calculation of the differences between simulated NDVI and Sentinel-2 NDVI 

of each reference segment in each date of each year, we calculate both the average μ(t) and 

the standard deviation σ(t) of the obtained differences, for each date. Using μ(t) and σ(t) of 

the differences among the dates, and to ensure the highest accuracy with least over- and 

under-estimations, three thresholds were selected as follow: (1) [μ + 1σ]; (2) [μ + 1.5σ]; 

and (3) [μ + 2σ], for each year. These thresholds are seen as the margin of errors used. The 

difference of wheat reference segments when using the three thresholds for both years are 

illustrated in box plots in the Results (Section 4.2). The most adequate threshold should 

have the highest accuracy in determining the wheat segments. It will be defined following 

the implementation of SEWMA (Section 4.3) through the production of confusion matrices 

for each selected threshold. Nonetheless, for now, these three thresholds should be used. 

In each year (2016 and 2017), the highest [μ(t) + nσ(t)] value among the dates was 

chosen to represent the threshold of its corresponding year, where n is either 1, 1.5 or 2 

depending on the chosen threshold. For instance, when using the threshold μ(t) + 1.5σ(t), 

its value on date 4 in 2016 (6th of April) was the highest (27%), thus, 27% was assigned 

as a threshold produced by 2016 wheat reference segments. A criterion now has to be met; 

at least in three out of the first six dates (DOY 47 through 137 for 2016 and DOY 41 

through 131 for 2017), segmented areas should have a difference (Diff) between simulated 

NDVI and S2 NDVI within the chosen threshold. If so, the segment is then considered as 

potential wheat cultivation. The later could also pinpoint at barley or triticale segments. 

The other segments are eliminated and not considered in the further processing steps. As a 

result, the output of the first phase is the identification of wheat candidate segments. 

3.2.2. Identification of wheat segments: Second phase 

By referring to the NDVI temporal profile analysis (Section 4.1), it was found that 

barley can be distinguished from wheat on DOY 107 through 117 in 2016 and DOY 131 

in 2017. While these periods generally highlight the anthesis of wheat, the NDVI average 

value for barley segments is generally lower than the NDVI average value for wheat 

cultivation. The difference between barley and wheat in terms of mean NDVI could be 

justified in terms of water availability/uptake since wheat is supplementary irrigated during 

the season, whereas, barley is generally a rain-fed cultivation (Carvalho et al., 2012). 
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If a segment’s mean NDVI is less than the total average NDVI plus the standard 

deviation of barley reference segments in anthesis, then it is considered as barley plantation 

and thus eliminated. As for triticale, and by consulting the NDVI temporal profile analysis 

(Section 4.1), on DOY 137 in 2016 and 151 in 2017, a huge drop of NDVI average value 

is shown. While these dates correspond to the harvesting period of triticale, thus rendering 

lands without vegetation cover and very low NDVI, the NDVI values for triticale plots are 

generally much lower than the NDVI values for wheat cultivation. Accordingly, if the 

difference between the date corresponding to anthesis and the date afterwards (t + 1) is 

lower than 70% (value set upon our observations on 645 wheat and triticale reference 

segments), at segment level, then this segment is classified as wheat. The others reflect 

triticale cultivated segments and thus eliminated. Therefore, the output of the second phase 

is the identification of wheat segments relying on the NDVI real values. In that event, after 

selecting the candidate segments (at the end of phase one) and the elimination of barley 

and triticale segments (at the end of phase two), wheat segments are then identified for 

both 2016 and 2017 years. It is important to note that the proposed approach was 

established by 2016 datasets and validated through 2017 datasets, and vice versa, using 

three thresholds (i.e., (1) μ + 1σ; (2) μ + 1.5σ; and (3) μ + 2σ) as mentioned above. 

3.2.3. Validation 

Accuracy assessments were done to evaluate the classification approach presented in 

this study. Since the classification approach for 2016 was done by relying on 2017 ground 

truth data (GTD) to calibrate it, and vice versa, we had to test the overall accuracy of 2016 

classification using 2016 GTD and for 2017 using 2017 GTD. For this purpose, wheat 

segments collected from 2016 were used to validate year 2016, and wheat segments 

collected in 2017 were used to validate year 2017. As to run the confusion matrix, wheat 

and non-wheat segments were needed. Same number as wheat segments was chosen for 

non-wheat segments. For 2017 classification, we had 348 wheat segments, thus an 

equivalent number of non-wheat segments were randomly chosen from the whole area of 

study so that the total number of segments to run the confusion matrix of 2017 was 696 

consisting of 50% wheat segments and 50% non-wheat segments. Same for 2016, the total 
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number of segments used was 432, consisting of 50% wheat segments and 50% non-wheat 

segments. 

4. Results 

In this section, we report the results of the proposed method. The obtained temporal 

profiles of the crops analyzed are presented in this section (Section 4.1). In addition, the 

preliminary results deduced from the first phase of SEWMA generation are also illustrated 

(Section 4.2). The accuracy assessment is reported for both years (Section 4.3) as well as 

the spatial distribution of wheat plots (Section 4.4). 

4.1.Crops’ temporal profiles 

Figures 5 and 6 represent the mean ± standard deviation of NIR and RED temporal 

profiles. The mean and the standard deviation values for the crops below (Figures 5 and 6) 

were extracted from the Sentinel-2 images for each date in each year (i.e., 2016 and 2017). 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 5 Mean ± standard deviation of RED and NIR temporal profiles of Wheat (a) 2016 and (b) 2017; 

Barley (c) 2016 and (d) 2017 and Triticale (e) 2016 and (f) 2017. 

  
(a) (b) 

  
(c) (d) 

Figure 6 Mean ± standard deviation of RED and NIR temporal profiles of spring potato (a) 2016 and (b) 

2017 and spring vegetables (c) 2016 and (d) 2017. 

By analyzing the differences among years, up to the third date, corresponding to 

heading stage (DOY 97/2016 and 101/2017), the three cereal cultivars (i.e., wheat, barley 

and triticale) have higher reflectance in the NIR band in 2016 than 2017 and lower 
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reflectance in the RED band in 2016 than 2017 (Figure 5). Among crops, wheat and triticale 

experienced a very similar behavior in terms of reflectance in both bands and years until 

the date when triticale was harvested (DOY 137/2016 and 151/2017). Whereas for barley, 

the reflectance in the NIR band was significantly lower than that of wheat and triticale for 

DOY 107-117/2016 and 131/2017, and the reflectance in the RED band was significantly 

higher than the reflectance in the RED band for wheat and triticale for DOY 131/2017. 

In order to make sure there was no classification confusion between the three main 

cereal crops (wheat, barley and triticale) and other crops that share part of their seasons, 

NIR and RED were analyzed for spring potato and spring vegetables (Figure 6). 

As the sowing dates of spring potato and spring vegetables do not occur before March, 

the reflectance values in the RED and NIR bands were close to each other (Figure 6). For 

spring potato, after the sowing date in March, the reflectance in the NIR began to increase 

(DOY 87/2016 and 101/2017) reaching the peak of around 0.55 in DOY 137/2016 and 0.65 

in DOY 151/2017. Nevertheless, the reflectance in the RED band also started experiencing 

a change and decreased to reach its minimum of around 0.04 in DOY 137/2016 and 151/2017 

corresponding to the potato full flowering stage. 

As for spring vegetables, reflectance in the RED and NIR did not start to change before 

DOY 97/2016 and 101/2017 (Figure 6). For the reflectance in the NIR band, the maximum 

was reached in DOY 137/2016 (0.35) and DOY 151/2017 (0.42). As for the reflectance in 

the RED, the minimum was reached in the same dates of 0.07 and 0.03 in 2016 and 2017 

respectively.  

The time profile of the NDVI with respect to time (dates of the available images) was 

constructed and analyzed for the three main cereal crops (i.e., wheat, barley and triticale) 

in addition to spring potato and spring vegetables during the two years of study (2016 and 

2017). The evolution of NDVI along both cropping seasons for the three main crops is 

shown in Figure 7, representing the mean ± standard deviation of NDVI temporal profiles. 
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(a) 

 
(b) 

Figure 7 NDVI temporal profile of wheat, barley, triticale, spring potato and spring vegetables of 2016 (a) 

and 2017 (b) years. 

Figure 7 clearly shows that the NDVI behavior during 2016 and 2017 of the cereal crops 

is not the same throughout the cropping season. The temporal profiles of the three main cereal 

classes (wheat, barley and triticale) during both years (Figure 7a,b) show the crop evolution 

after emergence through maturity (wheat and barley) and harvesting (triticale). In 2016 

(Figure 7a), the three classes finished the vegetative growth and reached anthesis in DOY 

107. After that, wheat and barley started their maturation stage in DOY 137 while triticale 
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was already harvested to be sold for fodder use. In 2017 (Figure 7b), the dormancy stage was 

relatively longer than 2016 (Figure 7a), which led to a different temporal profile, and anthesis 

was reached between DOY 111 and DOY 131. According to the NDVI images 

corresponding to the anthesis stage of both years, barley’s NDVI was significantly lower 

than wheat’s NDVI. As for spring potato and spring vegetables, indeed these two classes 

share some of their crop cycle with the three main cereal crops. As they are sowed between 

end of February and start of March, they start to witness an increase in their NDVI starting 

DOY 97 in 2016 and DOY 101 in 2017, thus, they are easily separated and do not actually 

interfere in our classification of winter wheat. 

4.2.SEWMA First phase preliminary results 

Through the first phase of SEWMA generation, linear relationships of wheat reference 

segments’ NDVI values were established for each year between each two consecutive dates 

(Equation (2)). The output parameters (slopes “a” and interceptions “b”) are listed in Table 

3, which were used to simulate NDVI images (Section 3.2.1) using Equation (3). 

Table 3 Slope (a) and interception (b) deduced from the already produced linear equations. 

Date 

Year 

1 2 3 4 5 6 7 8 

2016 DOY 

17 

DOY 

47 

a = 

1.211 

b = 

0.111 

DOY 

67 

a = 

0.670 

b = 

0.492 

DOY 

87 

a = 

0.459 

b = 

0.516 

DOY 

97 

a = 

0.673 

b = 

0.287 

DOY 

107 

a = 

0.442 

b = 

0.566 

DOY 

117 

a = 

1.055 

b = 

0.077 

DOY 

137 

a = 1.615 

b = 

−0.773 

2017 DOY 

11 

DOY 

41 

a = 

0.724 

b = 

0.138 

DOY 

51 

a = 

1.042 

b = 

0.008 

DOY 

71 

a = 

0.893 

b = 

0.296 

DOY 

101 

a = 

0.268 

b = 

0.464 

DOY 

111 

a = 

0.759 

b = 

0.408 

DOY 

131 

a = 

1.041 

b = 

0.012 

DOY 

151 

a = 1.426 

b = 

−0.674 

Through the identification of wheat candidate segments (Section 3.2.1), and after 

NDVI images were simulated depending on the parameters presented in Table 3 above, the 

differences between Sentinel-2 and simulated NDVI values versus thresholds assigned are 

presented in Figure 8. 



Chapter 3: Potential of optical data (Sentinel-2) in classifying winter wheat crop 

80 

 

  
(a) (b) 

  
(c) (d) 

  



Chapter 3: Potential of optical data (Sentinel-2) in classifying winter wheat crop 

81 

 

  
(e) (f) 

Figure 8 Differences of wheat reference segments when using the thresholds [μ + 1σ] (a) 2016 when 

calibrated by 2017 and (b) 2017 when calibrated by 2016, [μ + 1.5σ] (c) 2016 when calibrated by 2017 and 

(d) 2017 when calibrated by 2016 and [μ + 2σ] (e) 2016 when calibrated by 2017 and (f) 2017 when 

calibrated by 2016. 

As (Diff) (Equation (4)) reflects the difference between simulated NDVI and Sentinel-

2 NDVI, the differences of wheat reference segments (Figure 8) could be either positive or 

negative. For this reason, the threshold is expressed above positively and negatively. 

4.3.SEWMA Accuracy assesment 

The approach accuracy assessment was produced for the three thresholds (i.e., μ + 1σ, 

μ + 1.5σ and μ + 2σ) (Table 4). It clearly shows that the implementation of the 2016 

approach on 2017 generates a higher accuracy from, inversely, applying the 2017 approach 

on 2016. Also, according to this same table, the best accuracy was noted in the second 

threshold used (i.e., μ + 1.5σ). 

Table 4 Overall accuracies of wheat mapping using the three thresholds tested. 

Threshold SEWMA μ + 1σ μ + 1.5σ μ + 2σ 

Trained by 2016 and validated by 2017 84.0% 87.0% 84.7% 

Trained by 2017 and validated by 2016 80.4% 82.6% 79.2% 

A confusion matrix was presented for the second threshold (i.e., µ + 1.5σ) (Tables 5 and 

6). By using the 2016 trained wheat approach classification on 2017, the overall accuracy 

reached 82.6%. When applying the 2017 trained wheat approach classification on 2016, the 

overall accuracy reached 87.0%. 

Table 5 Confusion matrix of 2016 wheat classification trained by 2017 data. 

ClassValue Not Wheat Wheat Total User Accuracy 

Not wheat 331 104 435 0.761 
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Wheat 17 244 261 0.935 

Total 348 348 696  

Producer Accuracy 0.951 0.701  0.826 

Table 6 Confusion matrix of 2017 wheat classification trained by 2016 data. 

ClassValue Not Wheat Wheat Total User Accuracy 

Not wheat 189 29 218 0.867 

Wheat 27 187 214 0.874 

Total 216 216 432  

Producer Accuracy 0.875 0.866  0.870 

4.4.Wheat spatial distribution 

Table 7 shows the wheat cultivated areas in the Bekaa plain estimated based on the 

reference sample data, with 95% confidence interval according to (Olofsson et al., 2014), 

in addition to wheat areas declared by the Lebanese government. Wheat cultivated areas 

below present a decrease from 2016 to 2017. This area is densely distributed in the center 

and to the southern part of the study site (Figure 9). Crop rotation is also noticeable in 

comparison among the plots (Figure 9). 

Table 7 Areas estimates of wheat cultivated plots in the study area for years 2016 and 2017 (According to 

Olofsson et al. (Olofsson et al., 2014)). 

Year Wheat Area Estimated from SEWMA 

(ha)  

(Error-Corrected Estimates) 

Wheat Area by Lebanese Government 

(ha) 

2016 11,063 ± 1309 9073.4 

2017 7605 ± 1184 7877.8 
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Figure 9 Spatial distribution of wheat in the Bekaa plain for years 2016 and 2017. 

According to the wheat spatial distribution in Figure 9, cultivation of wheat was denser 

in the south west of the plain comparing to the northern part, as water is more available, 

thus more compatible to irrigation management. Rotation is also visible as most farmers 

follow the traditional potato-wheat rotation. However, A number of plots have witnessed 

wheat cultivation in the two consecutive years (2016 and 2017) occupying up to 28% of 

plots cultivated in monoculture each year. 
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5. Discussion 

5.1.Crops’ temporal profiles 

Winter wheat, which was classified in this study, is sown in November, similar to other 

winter cereals (i.e., barley and triticale). The winter cereals (i.e., wheat, barley and triticale) go 

through successive phenological stages during the cropping season, which are reflected in the 

NDVI temporal profiles. 

In each year (Figure 7), the winter cereals (i.e., wheat, barley and triticale) showed 

similar evolution in terms of NDVI until the vegetative growth was almost over (anthesis 

period), where the peak NDVI value is reached. Generally, irrigated crops have been found 

to have a higher peak NDVI values and maintain a higher NDVI during each crop’s growth 

cycle than non-irrigated crops (Wardlow et al., 2007). By the end of March, one 

supplementary irrigation had been already applied earlier that month to wheat and triticale. 

Due to this, wheat and triticale’s NDVI values rise to get closest to 1, whereas barleys’ 

NDVI values become significantly separable. By referring to Figure 5, this finding was 

reflected in the NIR and Red bands results. On DOY 107 through 117, barley exhibited a 

significant lower reflectance in the NIR band than wheat and triticale and a slightly higher 

reflectance in the visible (Red) band. As previously mentioned, the less leaf water content 

in barley than wheat and triticale could be responsible for such a drop (Knipling, 1970). 

After the flowering period, when triticale reaches maximum vegetative growth, 

farmers rush to harvest the triticale-cultivated plots before maturation kicks in. For this 

reason, triticale plots witness a sharp drop in their NDVI values due to harvesting event, 

thus triticale becomes significantly distinguishable. On further justification to such finding 

in the NDVI temporal profile (Figure 7), referring to Figure 5e,f, when harvesting triticale, 

the gap between the reflectance of Red and NIR bands is minimized. On one hand, the 

reflectance in the NIR decreased as the green cover is cut, thus the leaf water content is 

diminished, while on the other hand, the reflectance in the visible Red band increased 

because the contribution of chlorophyll pigments in the absorption in the Red band is 

significantly reduced, due to the harvesting event (Gates et al., 1965; Rabideau et al., 1946). 

As for the other analyzed crops (i.e., spring vegetables and spring potato), their sowing 

date is in March. Spring vegetables and spring potato start their vegetative development in 

spring, yet their NDVI does not reach high levels as they do not fully cover the soil. 
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According to the NDVI temporal profiles (Figure 7), spring vegetables and spring potato 

could be significantly separable from the three winter cereals. Referring to Figure 6 can 

explain such response. The increase in NDVI (Figure 7) during the spring is related to the 

increase in NIR reflectance (due to increase in leaf water content), and the decrease in the 

visible Red reflectance (due to the increase in leaf chlorophyll pigments) (Figure 6) 

(Rabideau et al., 1946). 

The standard deviation of the winter cereals was higher in the beginning of the season, 

probably due to different germination rates (Gates et al., 1965) and decreased gradually 

through reaching the anthesis stage. When anthesis stage is reached, the canopies reach 

their maximum height as vegetative growth stops when flowering occurs (Gates et al., 

1965). By the end of the vegetative growth, maximum leaf area is reached, which was 

reflected in the NDVI temporal profile (Gates et al., 1965; Grime, 1988). This difference 

in germination rates could be due to sowing date (Harris, 1996), variation in soil conditions 

(DASBERG and MENDEL, 1971), wheat varieties (Liu et al., 2005) and/or climate 

(Vallavieille-Pope et al., 1995). For spring vegetables and spring potato, during the first 

three dates, the standard deviation was low as the crops were not germinated before April. 

After germination, the standard deviation increased as different varieties of different crops 

were grouped together (Liu et al., 2005). 

According to the Lebanese Agricultural Research Institute (LARI), both years were 

climatically different as winter season in 2017 was colder than 2016. This was obviously 

reflected in the NDVI temporal profiles. In 2017, by the end of February, the winter cereals’ 

NDVI had not reached 0.6, whereas by that time in 2016, winter cereals’ NDVI have had 

reached higher values already (Figure 7). Such response in the NDVI reflectance is basically 

related to the dormancy period (Lunn et al., 2002) which was relatively shorter in 2016 than 

in 2017. 

5.2.SEWMA First phase preliminary results 

In the proposed approach, we did use linear fitting between each two adjacent dates 

(i.e., t and t + 1). The linear fitting between each two consecutive dates produced slopes and 

interceptions (Table 3), which were used afterwards to simulate NDVI images. Due to 

variability in weather conditions and imaging dates, curve-fittings classifiers cannot be 

trained and applied on different years (Zhong et al., 2012). As SEWMA was built using 
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short-term data, linear fitting was used rather than harmonic analysis, as the latter is 

suggested, when detecting changes in land use/land cover over a period of years is 

necessary (Jakubauskas et al., 2002). 

In addition, smoothed temporal profile (e.g., moving window method) used in curve-

fittings (Zhong et al., 2014) might produce a curve that do not represent only wheat plots, 

but also other cultivations. Moreover, we did find that a date (t + 1) could be predicted 

from date (t), which reflects that the development of the wheat could be predictable with 

high accuracy in different wheat parcels and in diverse climate and regions presented in 

our study area. 

Predicting NDVIt+1 from NDVIt could under- or over-estimate the probability of a 

segment being a candidate wheat plantation. In this context, the addition of a margin of 

error was required, by setting thresholds (Figure 8), which could be avoided when using 

curve-fitting techniques (Zhong et al., 2012). The choice of the selected threshold is 

discussed in the following section (Section 5.3). 

5.3.SEWMA Accuracy assessment 

SEWMA was run in parallel using the three thresholds (i.e., μ + 1σ, μ + 1.5σ and μ + 2σ) 

and μ + 1.5σ showed the highest final overall accuracy (Table 4), thus μ + 1.5σ was adopted. 

μ + 1.5σ threshold allowed us to select the wheat candidate segments (after the first phase) 

with less under estimation than μ + 1σ and less over estimation than μ + 2σ.  

The underestimation of wheat classification that occurred when applying 2016 linear 

relationships on 2017 was mainly for two reasons. First, since the threshold was produced 

by 2016 ground truth data, few wheat segments did not cross the first phase of the approach, 

as they exceeded the threshold set in more than 3 dates. The difference in climate among 

the two years (2016 and 2017) was reflected via the NDVI profiles, hence these few 

segments were not considered as candidate segments and eliminated after the first phase. 

Second, during the second phase of the approach, the mean NDVI of reference barley 

segments plus the standard deviation at the anthesis period (DOY 117 of 2016) used to 

designate barley segments, was around 0.84 (Figure 7a). Thereby, some wheat segments 

were removed. This elimination is mainly related to the fact that the year 2017 was a cold 

and wet year, and since the season of wheat was longer than that in 2016, the NDVI of 
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some wheat segments in 2017 was lower than that in 2016 during anthesis (DOY 117/2016 

and 131/2017). 

As shown in Figure 8d (2017 by 2016), since the dormancy period was longer in 2017 

than 2016, one date (date 3) was completely out of the threshold borders. In date 3/2017 

wheat was still through the dormancy stage (cumulative Growth Degree Days did not 

exceed 300 °C) and the NDVI did not exceed 0.45, while in date 3 of 2016, wheat’s NDVI 

has had reached 0.9 already (cumulative Growth Degree Days exceeded 450 °C) (Turner 

et al., 1999). If unlike our case, both years were climatically similar, less wheat segments 

will be eliminated after the first phase of the approach. 

When the approach was trained by 2017 ground truth data, the overall accuracy 

showed 82.6% when validated on 2016 images. The decrease in the overall accuracy was 

basically due to selecting some barley segments as wheat. This is because the classification 

was trained by 2017 GTD. As we refer to Figure 7a, in DOY 117, some barley segments 

had NDVI above 0.8. 

Winter wheat plantations at the Bekaa plain receive some supplementary irrigation 

during the spring-early summer season, hence their NDVI reaches higher level than barley 

during the anthesis period. However, if some growers cultivate wheat with no 

supplementary irrigation (due to water shortage), such wheat segments would have similar 

NDVI values as barley and could be eliminated through phase two of SEWMA. 

Our overall accuracies were satisfactory, similar to other previous studies, aiming at 

mapping winter crops (Atzberger and Rembold, 2013; Benedetti et al., 1994; Wardlow et 

al., 2007), especially early-season classification (Skakun et al., 2017b; Vaudour et al., 

2015). Discriminating winter wheat from other winter cereal crops especially barley, as 

proposed by our approach is highly challenging, as it was shown in a previous study, where 

accuracy dropped to below 70% when cereals were ungrouped and winter wheat was 

discriminated from barley (Vaudour et al., 2015). 

The difference in accuracy among both years (i.e., 2016 and 2017) is attributable to 

several reasons: (1) different number of training segments (plots or sub-plots); (2) different 

climatic conditions among the two years and (3) slightly different shift in the dates of 

available Sentinel-2 images. 
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5.4.Wheat spatial distribution 

As wheat growth, tillering, biomass and grain yield are highly affected by soil moisture 

(Akram, 2011; Hochheim and Barber, 1998), the dominance of wheat segments at the 

western-southern part of the plain is due to the higher availability of water in a cooler 

climate, thus allowing wheat’s root system to proliferate horizontally and vertically for 

water extraction, benefiting from the fact that the water table is relatively shallow. 

Contrariwise, at the upper part of the plain, farmers generally prefer to cultivate barley or 

other crops that do not require any supplementary irrigation during the winter season. 

To assess whether the change in areas between 2016 and 2017 was significant or error 

related, we followed the approach proposed by Olofsson et al. (2014). The approach relies 

basically on accuracy assessment sample data, in addition to the area proportions of each 

class, to eventually estimate the area of classified classes ± the standard error, with 95% 

confidence of interval. Referring to the areas of each year (Table 7), it appears that the wheat 

areas have significantly decreased between 2016 and 2017. 

The decrease in areas is basically related to the rotation system (i.e., simple potato-

wheat rotation) applied by most farmers in the plain. Thus, we expect an increase of these 

areas in 2018. Nevertheless, a change in the subsidy policy could discourage farmers from 

cultivating wheat in the future and could also be a reason behind the decrease in wheat 

cultivated area from 2016 through 2017. Actually, since 2016, the government has stopped 

purchasing the wheat production, instead, the Ministry of Economy (MoE) subsidizes 

farmers only by cultivated area with relatively small monetary amounts (800 USD/hectare), 

which barely cover the cultivation costs. The other constraint that farmers are facing is that 

Syrian borders are closed due to the ongoing Syrian civil war, which prevents them from 

exporting their production. While on the other hand, the Lebanese government is still 

importing wheat grains without any pre-consideration of the market needs leading to a fully 

saturated local market. For this reason, the deterioration of the unsold wheat production is 

never encouraging farmers to grow wheat throughout the coming years. 

A comparison of the wheat areas obtained by SEWMA to those estimated by the 

Lebanese government (Table 7) illustrates a similarity in the obtained numbers. To be more 

specific, the government’s estimations rely on wheat farmers who declare that they 

cultivated wheat to benefit from the subsidy program, which is followed by field 
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inspections. It is important to note that some wheat farmers do not give notice to the 

government, thus are not included in the governmental statistics. The difference between 

the areas estimated by SEWMA and those reported by the Lebanese government could be 

caused by several technical and human-related errors. First, discriminating triticale from 

wheat lands visually is generally difficult, even for specialized personnel. Second, fake 

reports could be submitted by farmers claiming that they have cultivated wheat, coupled 

with an impossibility of the corresponding teams to access their lands for field verification. 

Third, the estimations have started in 2016, thus, many farmers in that year have faced 

complications in submitting applications regarding their cultivated areas. 

Although it is never recommended to avoid rotation, there is a number of plots that 

witnessed wheat cultivation in two consecutive years (2016 and 2017) (Figure 9). Because 

other crops are not supported (e.g., potato, vegetables and legumes), poor farmers who rent 

lands in order to maintain their livelihood tend to avoid the risk of growing other crops and 

keep cultivating wheat in monoculture despite the risk of soil borne diseases, knowing in 

advance that they will be subsidized by the government.  

The proposed method has allowed the mapping of winter wheat throughout 2016 and 

2017. The outcome has proved that year-to-year transfer of knowledge is possible, if the 

evolution of a certain crop is well understood. Nevertheless, discriminating winter wheat 

among other winter cereal crops (i.e., barley and triticale) is doable using remotely-sensed 

data, in addition to ground observations. 

5.5.Strengths, limitations and future directions 

The proposed method, Simple and Effective Wheat Mapping Approach (SEWMA), has 

proven to be successful in predicting wheat spatial distribution in the Bekaa plain of 

Lebanon for the years 2016 and 2017.  

SEWMA appears to have several strong points; (1) it only requires limited number of 

satellite imageries datasets in one single season for executing the classification, an option 

highly crucial in a developing country such as Lebanon; (2) it discriminates wheat from 

other similar winter cereals (i.e., barley and triticale) with only few field campaigns 

required; (3) it produces accurate (87%) early outputs in an automated way, thus saving 

resources and time. 
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In the same context, application of SEWMA is technically simple and easy to 

implement. However, it is site dependent and some requirements have to be met. For 

instance, replicating SEWMA in different regions may be affected by climate, farming 

conditions, agricultural practices and crop calendar. Concerning this, avoiding field visits 

in a new study site may result in critical drawbacks and unsatisfactory results. 

Distinguishing winter wheat from barley and triticale could not be well achieved if the 

key phenological dates were not well known, particularly anthesis. In addition, irrigation 

practices were very important to deriving the conditions applied in the second phase of 

SEWMA. As previously mentioned (Section 5.3), wheat plots that are not irrigated due to 

shortage in water, could be susceptible to elimination, in addition to barley plots, during 

the second phase of SEWMA. 

As reported in Sentinel-2 data quality report in 2018 (ESA, 2018), Sentinel-2A images 

before 15 June 2016 stem registration errors, due to three main contributors: (a) dynamic 

vibrations residuals mainly related to on-board oscillations; (b) static LOS calibration 

residuals; and (c) correlation noise and outliers. Thus, several previous studies (Gascon et 

al., 2017; Skakun et al., 2017e, 2017c) have shown a mis-registration between multi-

temporal Sentinel-2A images from the same and different orbits for images acquired in 2016. 

To tackle the issue, we tried to visually investigate that matter by using the “chessboard” 

approach proposed by Shakun et al. (Skakun et al., 2017e) as well as the qualitative visual 

registration assessment described in (Yan et al., 2016). In addition, an open source software 

based on Yan et al. (Yan et al., 2016) was used to quantify the occurred shifting in the x and 

y directions. The average mis-registration on the whole Sentinel-2 tile between 2016 and 

2017 was around 0.068 ± 0.13 × 10 m in the x direction and 0.128 ± 0.263 × 10 m in the y 

direction. When quantifying the mis-registration on our study site, the shifting decreased to 

an average of 0.028 ± 0.1 × 10 m in the x direction and 0.034 ± 0.1 × 10 m in the y direction. 

It could be related to the location of our study area at the center of the Sentinel 2A tile 

(Figure 1) and far from the swath edges (Gascon et al., 2017). For future studies, an open 

source software (Scheffler et al., 2017; Yan et al., 2016) designed for mis-registration 

quantifications and corrections is recommended. These approaches are particularly needed 

when combining different sensors such as Landsat 8 and Sentinel-2 datasets. 
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As cloudy images are always a drawback when working with optical satellites, the 

availability of cloud-free datasets, or further pre-processing, is always recommended. 

Several algorithms have been proposed (e.g., Mean Attribute, Most Common Attribute 

value and k-nearest neighbor imputation) to fill the data lost by cloud removal (Abdallah 

and Shimshoni, 2014). The decision on whether to apply those algorithms, and which to 

choose amongst, is highly dependent on climatic and environmental conditions, as well as 

the purpose of use. 

Furthermore, since Sentinel-2B was not launched before March, 2017, we could not 

benefit from its data for our study, otherwise, temporal resolution could be maximized (5-

days) and more images could have been available. As other previous studies have proven, 

the usage of both optical and radar images would improve the classification, especially 

when pilot areas are covered with clouds (Inglada et al., 2016; McNairn et al., 2009). The 

performance of SEWMA was tested on the Bekaa plain of Lebanon, which is a semi-arid 

climatic region. Hence, for future studies, including other climatic regions and enlarging 

the sampling data would generate better outputs. However, with a total accuracy of 87%, 

our proposed approach could be implemented across the Bekaa region and in similar 

climatic areas. 

6. Conclusions 

A novel wheat classification tree-like approach was presented in this study. Combining 

remote sensing with field observations allowed us to classify wheat throughout 2016 and 

2017 four to six weeks prior to harvest which is highly important for any country with 

subsidy system. Moreover, the proposed approach, surnamed SEWMA, showed high 

accuracy in identifying wheat segments (87% in 2016 and 82.6% in 2017) even in 

climatically different years and with the existence of several crops with similar NDVI 

yearly profiles. 

Wheat area decreased from 11,063 ± 1309 ha in 2016 to 7605 ± 1184 in 2017 due to 

different reasons including; (1) agricultural practices; (2) corrupt subsidy policies; (3) the 

Syrian war and (4) marketing policies. As for the spatial distribution of wheat in the area 

of study, we found that wheat cultivations were denser in areas with more available water 

and shallower water table (i.e., south-west Bekaa plain) to secure supplemental irrigation.  
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Increasing the sustainability of water use and improved water productivity are some 

of the very essential goals of the Sustainable Development Goals (SDG). SEWMA in this 

sense plays a very effective role as its output allows forecasting the areas cultivated to 

allow controlling and sustainably managing wheat crops in food insecure countries. 

SEWMA is then an important tool that can be recommended for the monitoring of cultivated 

areas and assessment of expected yield by decision makers, food producers and trade 

managers, which could be integrated within the national and regional agricultural financial 

support systems. 
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1. Objectives 

Achieving a sufficient amount of wheat grain production has been a global goal. Wheat 

grain yield is affected by several factors, mainly related to weather conditions, agro 

ecological zones and agricultural practices. The main objective of this chapter is to analyze 

the potential of Sentinel-1 (S1) C-band radar data to identify three winter wheat key 

phenological phases that are of high economic and agronomic importance, namely 

germination, heading and soft dough phases, in addition to full maturity for harvesting. To 

achieve this objective, the temporal behavior of S1 was analyzed according to in-situ 

observations of the phenological stages. Then, the optimal S1 configuration (best 

polarization and incidence angle) for mapping each of the phenological phases and optimal 

time for harvesting shall be identified. Finally, an automated routine was developed to map 

the dates of each of the phases and the harvesting.  

2. Study site 

The Bekaa plain of Lebanon, which is a flat valley, is the selected study area for this study. 

The plain is located between 33°33’ N and 33°60’ N latitude, 35°39’ E and 36°14’ E 

longitude covering an area of about 860 km². The study site is stretched from Baalbeck 

(characterized by Mediterranean semi-arid climate) to the Qaraoun Lake (characterized by 

Mediterranean sub-humid climate). The average annual precipitation is around 600 mm. 

Out of the main cultivated field crops, winter wheat and potato occupy the largest areas of 

cultivated arable lands (Caiserman et al., 2019). In November, after the first effective rain, 

wheat farmers launch their sowing procedure to eventually harvest in June-July the year 

after, occupying up to 12000 ha annually at the plain. Over 80% of wheat plots are 

supplementary irrigated. The frequency of the irrigation occurrence is linked directly with 

the rainfall received during the season. However, as normally rain stops February-March, 

farmers tend to irrigate starting from April for the sake of better grain yield at the end of 

the season. Nitrogen is the other main input to wheat. The most growth driving nutrient 

(nitrogen) is supplied by wheat farmers as ammonium sulfate in amounts of up to 230 

Kg/ha. In the study area, the climatic conditions were different between the two years of 

study (2016 and 2017). Thus, more details on the climatic conditions of these two years 

are illustrated in Appendix B. 
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3. State of art 

To our knowledge, SAR data have been never used before to map the different important 

phenological phases of wheat. Hence, estimating precisely the date of each phase, on a plot 

scale is very critical, in order to assist farmers in their interventions (agricultural 

management) and decision makers in handling the national production (e.g. distribution, 

import, export, etc…).  

Germination, which is the first mapped phase, is very important since when its date is 

estimated, the future projection of the season can be made. In addition, when germination 

date is estimated and later used as input in bio-physical crop growth simulation models 

(e.g. CropSyst), the calculation of the growing degree days (GDD) accumulation is 

initiated. This is very important when known well, to properly estimate the whole seasonal 

phenology for best modelling (growth and production) outputs (Stockle et al., 2003). 

Applying late irrigation (after flowering) would lead to various consequences (e.g. low 

water use efficiency, fungal diseases and stem lodging) that might lead to yield reduction 

and thus to profit loss (Quemada and Gabriel, 2016; Wegulo et al., 2015). Thus, estimating 

the heading phase’s date is very important. Moreover, since applying nitrogen after heading 

would result in low nitrogen use efficiency in addition to other environmental drawbacks 

(e.g. nitrogen leaching), farmers are encouraged to stop their nitrogen fertilization after this 

time (i.e. heading). When the flag leaf is fully expanded, heading phase had had started and 

it is very critical that any fungicidal application should stop at this point (Blandino et al., 

2012; Wegulo et al., 2015). 

At soft dough phase, it is potentially feasible to predict the final grain protein content. Add 

to that, at this phase, visual observations for evaluating any infection of wheat by Fusarium 

Head Blight is doable by the farmers, to avoid grain yield reduction by scheduling fast 

interventions (fungicide application) (Blandino et al., 2012; Menesatti et al., 2013).  

As for harvesting, and since in Mediterranean countries wheat is financially supported by 

subsidy system, the reception of the grains have to be done fast, to avoid further quality 

deterioration, as well as to support farmers with the required payments (based on areas or 

production). Post-harvest handling of wheat grains could be very critical (Megan et al., 
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2003) because as storage period time increases, the risk of mycotoxins and fungus 

contamination increases and the need of grain fumigation during storage period would rise.  

4. Datasets (satellite and ground data) 

Two types of datasets were essential to conduct this study. Remote sensing data and in-situ 

observation of phenological stages and harvesting dates for reference plots. In remote 

sensing data, optical images (Sentinel-2) were acquired to generate the NDVI temporal 

profile (48 Sentinel-2 images) of wheat. In addition, radar images (Sentinel-1 SAR data) 

were also acquired to generate the wheat backscattering time-series (100 images). The 

Sentinel-1 data were acquired in both polarization (VV and VH) at two ranges of incidence 

angles (32°-34° and 43°-45°). All data were acquired between November, 2017 and 

August, 2018.  

The Sentinel-1 temporal-series (VV, VH and VV/VH) were initially normalized to adjust 

the values at a common scale (between 0 and 1): 

𝑌′ =
𝑌−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
                                                          Eq. 1 

 

where Y’ is the normalized S1 backscattering coefficient in VV, VH and VV/VH.  Y is the 

initial value of the time series (calibrated S1 backscattering coefficient σ0), Ymin is the 

minimum value of the time series, and Ymax is the maximum value of the time series. 

The normalized profiles (in VV, VH and VV/VH) were next smoothed using a Gaussian 

filter and then modeled with sum of Gaussian functions (up to three Gaussians): 

                                                𝑌′ = ∑ 𝑎𝑖
𝑖=3
𝑖=1  𝑒

−
(𝑥−𝑏𝑖)

2

2𝑐𝑖
2

                      i≤3                         Eq. 2 

Where, i is the order of Gaussian, ai is the amplitude of the Gaussian, bi is the Gaussian 

peak position in Julian days, and ci is the standard deviation of the Gaussian in Julian days. 

The least square method was applied to determine the values of ai, bi, ci separately for VV, 

VH and VV/VH (corresponding to the lowest difference between the smoothed profile and 

the function sum of Gaussians). To operate the least square method, initial values of 

(ai,bi,ci) are chosen according to a preliminary analysis of the σ0-profiles. 
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The number of Gaussian functions necessary to model the smoothed profiles is equal to the 

number of times that the derivative of the smoothed profile changes from positive to 

negative (known local maximums). 

For in-situ observations (reference plots), 21 reference plots were selected for West Bekaa 

and 8 reference plots were selected for North Bekaa. The germination, heading, soft dough 

and harvesting dates were observed for the reference plots. 

5. Methods 

The proposed methodology towards mapping the winter wheat phenological phases in 

addition to harvesting consists of four main steps: 

(1) Calibration and terrain correction of the S1 images to obtain the backscatter in the 

two polarizations (VV and VH) in decibels (dB), in addition to the ratio VV/VH 

(dB).  

(2) Interpretation of S1 temporal variation in respect to the occurrence of phenological 

stages and harvesting to identify the best S1 configuration (polarization and 

incidence angle) to map each of the phases. 

(3) Smoothing and Gaussian fitting of the S1 temporal-series to automatically 

determine theses stages. Smoothing and Gaussian fitting are applied on the already 

classified winter wheat plots in the Bekaa plain of Lebanon.  

(4) The phenological phases (germination, heading and soft dough) are mapped for 

West Bekaa, while harvesting is mapped for both West and North Bekaa as wheat 

is harvested earlier in North than West Bekaa. The date estimation is done using 

the optimal S1 configuration (polarization and incidence angle). 

6. Results 

The results of our work include the determination of the optimal S1 configuration to map 

each phenological phase and the harvesting, the calculation of the difference between the 

estimated and observed phenological phases date as well as the associated RMSE on the 

estimated phenological phases date. In addition, the winter wheat plots’ percentage in each 

6-day period is demonstrated for each mapped phenological phase of West Bekaa plus the 

harvesting of West (WB) and North (NB) Bekaa, 
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6.1.Optimal configuration 

For best dates’ estimation, germination date was estimated using VV/VH (dB) at 32°-34° 

incidence angle. For heading, VV (dB) polarization at 32°-34° incidence angle was used. 

For soft dough, VH (dB) polarization at 43°-45° incidence angle was used. Eventually, for 

harvesting VV/VH (dB) ratio at 32°-34° incidence angle was used. For estimating the 

germination date, the first peak in the sum of Gaussians fitting (positive derivative) was 

used. For estimating the heading date, the first minimum after germination in the sum of 

Gaussians fitting was used (identification starts after germination date). For estimating the 

soft dough phase, the first maximum after heading in the sum of Gaussians fitting was used 

(identification starts after heading date). For estimating the harvesting date, the last 

maximum after soft dough in the sum of Gaussians fitting was used (identification starts 

after soft dough date). 

6.2.Accuracy assessment and quantitative analysis 

Looking at the RMSE between predicted and observed dates, the germination and 

harvesting for West Bekaa have shown the least RMSE with 2.9 and 3.0 days, respectively. 

Heading and soft dough phases, for the same part of the plain, have shown higher RMSE 

with 5.5 and 5.1 days, respectively. As for the North Bekaa, 4.5 days of RMSE was 

observed for harvesting event. In addition, a slight underestimation was observed for 

germination and heading with -0.2 and -1.1 days, respectively. As for the soft dough and 

harvesting for West and North Bekaa, an overestimation was observed with 3.1, 0.6 and 

3.6 days, respectively. 

During germination, around 79% of the plots had completed germination between the 3rd 

of December 2017 and the 02nd of January, 2018, which is very logical due to the already 

known period of sowing, which was during the third week of November 2017. As for 

heading phase, around 73% of the plots have completed heading between the 2nd of April 

and the 26th of April. For soft dough phase, around 88% of the plots have achieved this 

phase between 16th of May and the 09th of June. As for harvesting, the difference in timing 

between the two parts of the Bekaa plain is observed. The average date of harvesting in 

West Bekaa is the 20th of July, 2018, while for the North Bekaa, 13th of July, 2018. In 

addition, 85% of the wheat in the North Bekaa was harvested between 02nd of July and the 

26th of July, while for the West Bekaa, 92% of wheat was harvested between 8th of July 
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and the 01st of August. In addition, the phenological phases have been proven to be inter-

related. Plots which achieved early germination, achieved early heading, and same applies 

for the other phases. 

6.3.Towards near real time monitoring 

To achieve near real time monitoring, one has to assume that the full temporal series is not 

available (until the end of the season). To study the sensitivity of the Sentinel-1 radar signal 

in estimating the phenological phases dates using a non-full S1 temporal series, the S1 

temporal series was first considered for each reference plot until the date of each 

phenological phase then some supplementary images (one, two and three) were added to 

the temporal series, which is limited to the date of each phenological date. Gaussian 

functions were then fitted in order to estimate the date of each of the phenological phases. 

RMSE on the date estimation of each phenological phase was calculated, in addition to the 

difference between the estimated and the observed dates (bias). The results have shown 

that the RMSE and the bias are higher than when a full temporal series is considered. The 

RMSE results were 20.8, 19.1, 18.6 and 9.6 days for germination when no image, one, two 

and three supplementary S1 images were added, respectively. For heading, the RMSE 

results were 19.1, 15.3, 14.7 and 11.1 days when no image, one, two and three 

supplementary S1 images were added, respectively. For soft dough, the RMSE results were 

10.9, 10.5, 6.1 and 6.1 days when no image, one, two and three supplementary S1 images 

were added, respectively. For harvesting, the RMSE results were 11.7, 11.3, 3.9 and 3.9 

days when no image, one, two and three supplementary S1 images were added, 

respectively. As for the bias, an overestimation was observed for germination and soft 

dough while an underestimation was observed for heading and harvesting.  

7. Discussion 

In the discussion section, the temporal behavior of both S1 (VV and VH polarizations plus 

the ratio VV/VH) and NDVI are compared to prove the need of the Sentinel-1 data. After, 

the influence of the incidence angle is discussed. Eventually, the mapping outputs and the 

accuracies are discussed. 

7.1.S1 polarizations versus NDVI temporal behavior 

The high sensitivity of SAR temporal behavior to winter wheat growth cycle in comparison 

to NDVI, is the most noticeable aspect. The NDVI has shown maximum values during 



Chapter 4: Potential of SAR data in monitoring the winter wheat phenology 

100 

 

April, 105 to 145 days after sowing (DAS). Except for heading and harvesting, there is no 

clear significant indicators for the rest of the phases, appearing in the temporal profile. 

Regarding SAR, from sowing to 90 Days After Sowing (DAS), the VV and VH 

polarizations temporal profiles witness a fluctuation over this period. This is because the 

S1 backscatter is highly sensitive to soil moisture, as in this period continues rainfall events 

were recorded and thus explaining that both VV and VH polarizations are affected mostly 

by variations in the soil backscatter driven by soil water content (SWC). The VV/VH 

temporal profiles reduce the dependence of the radar signal on soil moisture especially 

after a rain event. However, the effect of soil moisture is not completely eliminated with 

VV/VH since the sensitivity of the radar signal in the C-band to soil water content is 

slightly different in VV and in VH polarizations (Baghdadi et al., 2006). 

From DAS 90 to DAS 105, fluctuations in both VV and VH polarizations fade away and a 

decrease in the backscatter is observed for two main reasons. First, soil moisture decreases 

due to no rain events that lead to weaker soil contribution, and second because in this 

period, wheat canopies are tillering and jointing, leading to increased LAI and thus causing 

more soil backscattering attenuation (Brown et al., 2003).  

From DAS 105 until heading is achieved (DAS 138-144), both VV and VH polarizations 

keep on their continuous sharp decrease to reach the minimum observed backscatter. In 

this period (DAS 105 until heading), VV decreases faster and sharper than the VH. At the 

heading period (appearance of ears), the direct vegetation scattering is low and the 

attenuation of the soil contribution is high. This is explained by the ratio (VV/VH) as the 

minimum value is reached at heading time. 

From heading to soft dough (144 to 186 DAS), the S1 radar backscatter increases in both 

polarizations (VV and VH) to reach a maximum σ°-value. The main mechanisms taking 

place in the backscatter are attributed to volume scattering which is in agreement with 

previous studies (Brown et al., 2003; Mattia et al., 2003; Picard et al., 2003). Add to that, 

in this period, grain filling process is taking place and moisture level is increasing in the 

wheat ears during post-pollination stage. The canopy is well developed and the soil 

contribution is very low (also the stem-ground interaction), meaning that the VV and VH 
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backscatter thus could be also increased by rising ears moisture level and not by soil 

contribution. Consequently, the ratio (VV/VH) is constant with a slight increase as VH 

backscatter is more attenuated by the vegetation (Mattia et al., 2003; Veloso et al., 2017). 

From soft dough to harvesting, a soft decrease was seen in the VV polarization, due to 

decreasing moisture level in the canopies heads and the moisture within the grains had 

dried up. As for the VH, the decrease was sharper with crop senescence. Consequently, the 

ratio (VV/VH) continues on increasing as fresh biomass is decreasing until full 

physiological maturity (harvesting time). 

7.2.Influence of incidence angle 

In VV polarization, from jointing phase until heading phase, the decrease in the radar signal 

at low incidence angle (32°-34°) is sharper than the high incidence angle (43°-45°). From 

heading to soft dough, the signal increases at both angles. However, at soft dough phase, 

the backscatter at 43°-45° incidence angle is higher than at 32°-34°, meaning that the signal 

holds more canopy contribution at high incidence angle comparing to the low one. At 

harvest, the signal in the VV polarization shows the same σ° at both incidence angles (32°-

34° and 43°-45°). In VH polarization, as the canopies reach heading phase, the backscatter 

at high incidence angle reaches lower level than that at low incidence angle. For this reason, 

this configuration (VH polarization at 43°-45°) was the most appropriate to map soft dough 

phase, because the increase from heading to soft dough is thus sharper at 43°-45° than at 

32°-34°. In VV/VH (dB) ratio, a mild decrease is seen from sowing to heading in both 

incidence angles. From heading to soft dough phase, the ratio (VV/VH) is nearly constant 

at the two incidence angles (32°-34° and 43°-45°) as the signal in both VV and VH equally 

increases throughout this period. From soft dough to harvesting, VV/VH (dB) at low 

incidence angle has shown a more significant dynamic (sharper decrease) than at high 

incidence angle. 

7.3.Mapping outputs and quality indicators 

The average difference between the estimated and observed dates (bias) as well as the 

RMSE calculated on the estimated phenological phases date are satisfactory (less than 6 

days for all the phenological phases). Each of germination, heading and soft dough lasts 

for up to few days, thus achieving an estimated date with an RMSE of maximum 5 days is 
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satisfactory for the needed interventions. As for harvesting, farmers take few days for 

storing their grain yield and moving them to warehouses. In addition, the maximum RMSE 

was less than the Sentinel-1 revisit time (6 days). As for the bias, a slight underestimation 

(negative bias) was observed for germination and heading. As for the soft dough and 

harvesting for West and North Bekaa, the bias was positive, thus an overestimation was 

noted.  

8. Conclusions and future directions 

This study shows the potential of S1 SAR data to map the most important wheat 

phenological phases. Germination and harvesting of West Bekaa were mapped with an 

RMSE of around 3 days. Heading, soft dough in two different Mediterranean agroclimatic 

zones, the dry sub humid West Bekaa and harvesting of semi-arid North Bekaa were 

mapped with an RMSE of around 5 days.  

A sensitivity analysis was conducted to test the precision of the dates’ estimation of the 

phenological phases when a non-full S1 temporal series (limited to the date of each 

phenological phase’s date) was available. The RMSE and the difference between the 

estimated and the observed dates (bias) were higher comparing to when  a full temporal 

series (from sowing to harvesting) was considered. However, the results are promising and 

for future work, more reference plots should be observed for having a better insight on the 

attainable precision of phenological phases dates’ estimation, when the full temporal series 

is not available. 

The three main strengths of the mapping approach proposed in this study are: 1) automation 

through Python scripting that has led to fast results generation, 2) the approach appears 

valid when mapping harvesting on a different part of the plain with different pedo climatic 

conditions, thus harvesting dates, and 3) the time of achieving each phase, for a certain 

plot, affected the time of the following one. 

Extending the methodology to other important crops (e.g. potato, maize, other cereals and 

vineyards) on different sites in the Mediterranean area is our main target for the coming 

work, to be eventually merged with crop modelling systems, especially when on-field 

verifications are not easily implemented and/or when they are very costly.  
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Abstract: The ability of Synthetic Aperture Radar (SAR) Sentinel-1 data to detect the 

main wheat phenological phases was investigated in the Bekaa plain of Lebanon. 

Accordingly, the temporal variation of Sentinel-1 (S1) signal was analyzed as a function 

of the phenological phases’ dates observed in situ (germination; heading and soft dough), 

and harvesting. Results showed that S1 data, unlike the Normalized Difference Vegetation 

Index (NDVI) data, were able to estimate the dates of theses phenological phases due to 

significant variations in S1 temporal series at the dates of germination, heading, soft 

dough, and harvesting. Particularly, the ratio VV/VH at low incidence angle (32°–34°) 

was able to detect the germination and harvesting dates. VV polarization at low incidence 

angle (32°–34°) was able to detect the heading phase, while VH polarization at high 

incidence angle (43°–45°) was better than that at low incidence angle (32°–34°), in 

detecting the soft dough phase. An automated approach for main wheat phenological 

phases’ determination was then developed on the western part of the Bekaa plain. This 

approach modelled the S1 SAR temporal series by smoothing and fitting the temporal 

series with Gaussian functions (up to three Gaussians) allowing thus to automatically 

detect the main wheat phenological phases from the sum of these Gaussians. To test its 

robustness, the automated method was applied on the northern part of the Bekaa plain, in 

which winter wheat is harvested usually earlier because of the different weather 

conditions. The Root Mean Square Error (RMSE) of the estimation of the phenological 

phases’ dates was 2.9 days for germination, 5.5 days for heading, 5.1 days soft dough, 3.0 

days for West Bekaa’s harvesting, and 4.5 days for North Bekaa’s harvesting. In addition, 



Chapter 4: Potential of SAR data in monitoring the winter wheat phenology 

105 

 

a slight underestimation was observed for germination and heading of West Bekaa (-0.2 

and -1.1 days, respectively) while an overestimation was observed for soft dough of West 

Bekaa and harvesting for both West and North Bekaa (3.1, 0.6, and 3.6 days, 

respectively). These results are encouraging, and thus prove that S1 data are powerful as 

a tool for crop monitoring, to serve enhanced crop management and production handling. 

Keywords: SAR; Sentinel-1; Sentinel-2; NDVI; wheat; phenology; Lebanon; Bekaa; 

Mediterranean 

 

1. Introduction 

Demanding and achieving sufficient and stable crop productivity is a global desire. 

Crop management must be conscientious to climatic variability and adapt its practices to 

the given conditions, whether socio-economic oriented, or environmentally related. From 

this perspective, it is very important to understand the mechanisms driving the whole 

cropping cycle, to eventually understand the dynamics leading to attain each of its 

physiological phases (Fieuzal et al., 2013). The continuous identification of the 

phenological status of the crops is highly necessary, especially the phenological phases at 

which farmers’ and decision-makers’ interventions are required, speaking of irrigation, 

fertilization, pesticides application, and yield handling (Baghdadi et al., 2009; Fieuzal et 

al., 2013; Mandal et al., 2018). From this perspective, the original motivation of this paper 

comes from farming practices in winter wheat plots over semi-arid regions like the Bekaa 

plain of Lebanon. Globally, at a given winter wheat plot, germination is a very critical 

phase to be known, from which the future projection of the season can be made. From a 

modelling (crop simulation models) perspective, the germination is the very starting point 

to initiate the calculation of the growing degree days (GDD) accumulation, which is very 

important when known well, to properly estimate the whole seasonal phenology for best 

modelling (growth and production) outputs (Stockle et al., 1994). Because of the 

precipitation scarcity (Damkjaer and Taylor, 2017; Kahil et al., 2015; Rao et al., 2016), 

supplementary irrigation is applied to wheat during spring to secure wheat water demands. 

Thus, the irrigation events take place between March and April, during the wheat 
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vegetative cycle, which ends at heading/start of flowering. Applying late irrigation, 

however after this time (i.e., flowering) would lead to various consequences: (1) Reduced 

water use efficiency (Gu et al., 2002; Quemada and Gabriel, 2016; Zhang et al., 2008), (2) 

increased fungal diseases (Blandino et al., 2012; Menesatti et al., 2013; Wegulo et al., 

2015), and (3) stem lodging (Peng et al., 2014; Wegulo et al., 2015). These consequences, 

nevertheless, will result in substantial reduction in the final wheat grain yield and/or in a 

lower net profit, putting the farmer at high economic risk. In regard to fertilizers 

applications, various studies have proven that nitrogen application could be either applied 

after sowing, and/or during the tillering time (Deressa et al., 2012; Meade et al., 2011; 

Mohammed et al., 2013; Wang et al., 2013). Thus, it is very important to note that when 

heading is reached, any added nitrogen would lead to nitrogen loss and low nitrogen-use 

efficiency, which will cause, beside the environmental consequences, a tremendous drop 

in the whole system efficiency and the final net profit. However, if the purpose is to 

increase the grain quality by enhancing the protein content, identifying heading is required 

to apply nitrogen at flowering phase (Meade et al., 2011; Sowers et al., 1994). Ultimately, 

wheat farmers apply their fungicides as the flag leaf starts appearing until it is fully 

expanded. When the flag leaf is fully expanded, heading phase had started and it is very 

critical that any fungicidal application should stop at this point (Blandino et al., 2012; 

Wegulo et al., 2015). At the soft dough phase, total maximum dry matter content and total 

nitrogen accumulation occur (Wang and Engel, 1998). In addition, at soft dough phase, it 

is potentially feasible to predict the final grain protein content. The application of 

fungicides at earlier phases (during flag leaf expansion) aims to reduce the infection of 

wheat by fusarium head blight (FHB), which can be visually evaluated by carrying out 

visual observations during the soft dough phase, raising the importance of the identification 

of this phase for fast interventions (Blandino et al., 2012; Menesatti et al., 2013). Several 

studies, nevertheless, have stated that during very high temperatures after anthesis had 

taken place, applying irrigation in small amounts from flowering to soft dough phases 

could be desirable for maximizing the final grain yield (Bano and Yasmeen, 2010; Wang 

et al., 2013). In Mediterranean countries, where wheat is financially supported by subsidy 

system, the reception of the grains has to be done fast, to avoid further quality deterioration, 

as well as to support farmers with the required payments (based on areas or production). 
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Thus, identifying harvesting time at plot scale is important as post-harvest handling of 

wheat grains could be very critical (Megan et al., 2003). As storage period time increases, 

the risk of mycotoxins and fungus contamination increases and the need of grain 

fumigation during storage period would rise (Birck et al., 2006). 

Intensive field work and in situ campaigns are known to require large number of 

personnel, high logistical supply, machinery and equipment, and thus huge budgets, which 

increase with the increasing area of the study site. In this context, remotely sensing data 

provide information on the spatial distribution (Nasrallah et al., 2018) in addition to 

monitoring crop growth by providing precise and timely information on the phenological 

status and vegetation development. From field to global scale, remote sensing tools can 

tackle these information, especially when coupled with crop growth models for assessing 

crop yields (Battude et al., 2016b; Duchemin et al., 2015; Lobell et al., 2015; Pantazi et al., 

2016) and computing their water cycle budgets (Bisquert et al., 2016; Lee and Kim, 2016; 

Liou and Kar, 2014; Ruhoff et al., 2012). 

By the route of vegetation indices, optical data (e.g., Sentinel-2, Landsat 8, and 

MODIS) have been widely used by seeking the interconnection between the plant optical 

properties and its photosynthetic activity characterized by the content of chlorophyll in the 

leaves (Myneni and Williams, 1994). Even though different vegetation indices have been 

developed and used (e.g., Enhanced Vegetation Index (EVI) (Matsushita et al., 2007) and 

the Soil Adjusted Vegetation Index (SAVI) (Jin et al., 2015)), the most used vegetation 

index is the Normalized Difference Vegetation Index (NDVI) (Skakun et al., 2017d), which 

has been directly related to the leaf area index (LAI) (Jin et al., 2015). In their significant 

contribution, the optical satellites have been used for crop area estimates through the 

production of crop type maps and crop classification (Kussul et al., 2017; Senf et al., 2015; 

Wardlow et al., 2007), and plant-biophysical related properties (Baloloy et al., 2018; Ghosh 

et al., 2016). Apart from being limited by cloudy weather conditions, one limitation, 

however, in using NDVI resides in reaching saturation in dense vegetation canopies, 

resulting from the saturation of LAI for values above 3 m2/m2 (i.e., very low sensitivity of 

NDVI at high values of leaf area index) (Arnold, 2006; Asner et al., 2003; Asrar et al., 

2010; Hatfield et al., 1985; Hobbs, 1995; Sellers, 1985). This may cause, nevertheless, 

uncertainty in detecting the crop physiological phases, and underestimation of ecosystem 
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productivity in high (dense) biomass regions. With regard to Synthetic Aperture Radar 

(SAR), many studies have been carried out utilizing these data in their relation to crop 

classification (Inglada et al., 2016), soil moisture estimations (Baghdadi et al., 2016; 

Paloscia et al., 2013), and crop phenological trajectory interpretations (Cookmartin et al., 

2000; Picard and Toan, 2002). Because of its complexity and interpretation difficulties, 

SAR data, however, have been less used in the agricultural field applications, compared to 

optical data.  

By the launching of the first Sentinel satellite developed by the European Space 

Agency (ESA), free-of-charge data for the operational needs of the Copernicus program 

became available. From Sentinel-1A (April 2014) to Sentinel-1B (April 2016), C-band 

multi-temporal series of SAR imageries were made available at high spatial (10 m) and 

temporal (6 days) resolutions. While for optical data supply, Sentinel-2A and Sentinel-2B, 

developed by ESA as well, allow the availability of free high spatial (10 m) and temporal 

(5 days) resolutions data. The launching of Sentinel-2A and Sentinel-2B was in June 2015 

and March 2017 respectively, as an integral part of Europe’s Copernicus program aiming 

at independent and continued global observation capacities (Immitzer et al., 2016). As the 

planned continuity of Sentinel data until 2030 is ensured, the future generation of Sentinel 

imageries beyond 2030 is nonetheless planned. Hence, free and accurate continued crop 

monitoring will continue to exist. In regard to crop monitoring, minor number of studies 

have significantly relied on heavy time-series Sentinel-1 (SAR) data for monitoring 

different types of crops (Inglada et al., 2016; Navarro et al., 2016; Veloso et al., 2017). In 

order to come up with reliable outputs, understanding the physiological cycle of the studied 

crops is highly vital. 

The paper focuses on the analysis of the temporal behavior of Sentinel-1 SAR 

backscatter coefficients (VV and VH) at two SAR incidence angles (32°–34° and 43°–45°) 

and of NDVI calculated from Sentinel-2 images of the wheat crop in the Bekaa plain of 

Lebanon. The main objective of the paper is to confirm that Sentienl-1 C-band data are 

able to identify spatially and temporally three winter wheat key phenological phases that 

are of high economic and agronomic importance, namely germination, heading and soft 

dough phases, in addition to harvesting. The successful identification and mapping of these 

phases reduce the economic losses on the farmer, as well as on the policymakers because 
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of their direct relation to some agricultural practices in response to biotic or edaphic 

stresses on one hand, and to take care of the national grain production on the other. The 

paper is organized as material and methods (Section 2), presentation of main results 

(Section 3), discussion of the results (Section 4), and conclusions (Section 5). 

2. Material and methods 

2.1. Study site 

The Bekaa plain of Lebanon, which is a flat valley, is the selected study area for this 

study. The plain, which is shown in Figure 1, is located between 33°33′ N and 34°00′ N 

latitude, 35°40′ E and 36°14′ E longitude covering an area of about 860 km2. The study 

region is located between two natural units having very steep slopes; the eastern slopes of 

the Mount-Lebanon Mountains (western unit) and the western slopes of the Anti-Lebanon 

Mountains (eastern unit). The study site is stretched from Baalbek (characterized by semi-

arid climate) to the Qaraoun Lake (characterized by the Mediterranean climate). The 

average annual precipitation is around 600 mm. Economically, agriculture is the main 

activity securing the farmers’ livelihood at the plain (Darwish et al., 2008; Nasrallah et al., 

2018). Out of the main cultivated field crops, winter wheat and potato occupy the largest 

areas of cultivated arable lands (Caiserman et al., 2019). In November, after the first 

effective rain, wheat farmers launch their sowing procedure to eventually harvest in June-

July the year after, occupying up to 12,000 ha annually of the plain. Over 80% of the wheat 

plots are supplementary irrigated. The frequency of the irrigation occurrence is linked 

directly with the rainfall received during the season. However, as normally the rain stops 

in February-March, farmers tend to irrigate for the sake of better grain yield at the end of 

the season. Nitrogen is the other main input to wheat. The most growth driving nutrient 

(Nitrogen) is supplied by wheat farmers as ammonium sulfate in amounts of up to 230 

Kg/ha. However, the amounts and timing vary among farmers because of different 

fertilization management practices, as well as the crop rotation types.  
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Figure 1 Location of Bekaa plain of Lebanon with major towns located. North Bekaa and West Bekaa are 

shown on the upper and lower parts of the map, respectively (Landcover/Landuse NCRS-L, 2016). 

2.2.Remote sensing data 

2.2.1. Optical data 

Fifty-eight optical images were acquired by the two twin satellites of Sentinel-2 

(Sentinel-2A and Sentinel-2B). The acquired images cover a period from November 2017 

to August 2018. The period corresponds to some period before sowing, the whole crop 

(i.e., winter wheat) cycle, and some period after harvesting the crop. The reason behind 

this is to make sure that the whole crop cycle is tracked on one hand, and to see whether 

there is any contribution of a previous and/or following crop, on the other. The pre-

processing of L1C (Top of Atmosphere or TOA reflectance) Sentinel-2 images, which 

includes ortho-rectification, cloud removal (using cloud mask produced by 

Sen2Cor/SNAP), radiometric calibration, and atmospheric correction, was produced using 

SNAP/Sentinel-2 toolbox. The output of the pre-processing corresponded to L2A (bottom 

of atmosphere or BOA reflectance). The reason behind using the optical images (Sentinel-
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2) is to calculate the Normalized Difference Vegetation Index (NDVI). It has been shown 

that the NDVI is positively correlated with the above ground green biomass, meaning that 

as leafy green biomass increases, the NDVI gets closer to 1 (Gates et al., 1965). Hence, it 

is very useful to compute the NDVI for the crop to understand the temporal behavior with 

respect to the crop growth. 

Consequently, the NDVI was computed. The NDVI is capable in predicting plants’ 

photosynthetic activity by being determined from the red (𝜌𝑅𝐸𝐷) and near infrared (𝜌𝑁𝐼𝑅) 

reflectance values, producing an index ranging from -1 to +1 (Goward et al., 1991), as 

follows: 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷                                                 Eq. 1 

2.2.2. Sentinel-1 data 

One hundred Sentinel-1A and Sentinel-1B images acquired at the ascending overpass, 

were downloaded between November, 2017 and August, 2018. These images were 

acquired at two incidence angles ranges, over the Bekaa plain of Lebanon: 32°–34° (50 

images at ascending overpass) and 43°–45° (50 images at ascending overpass). The 

interferometric wideswath (IW) is a predefined mode by the ESA Sentinel-1 observation 

strategy, providing dual polarization (VV and VH) imageries at a 10-m spatial resolution 

with a revisit time of 6 days (Satalino et al., 2014, 2012; Torbick et al., 2017). In this study, 

all the images were generated from the high-resolution, Level-1 Ground Range Detected 

(GRD) product. The data were pre-processed using the Sentinel-1 Toolbox in SNAP 

(developed by ESA). The preprocessing procedure included thermal noise removal, 

radiometric and geometric calibration, and speckle filtering (Bruniquel and Lopes, 1997; 

Quegan and Yu, 2001). Through the radiometric calibration, the raw image digital values 

were converted into backscattering coefficients in linear unit, whereas through the 

geometric calibration, the images were ortho-rectified using a Digital Elevation Model 

(DEM) of the Shuttle Radar Topography Mission (SRTM) at 30 m spatial resolution. For 

each reference plot, the mean backscattering coefficient (σ0) was calculated from each 

calibrated Sentinel-1 image by averaging all pixel values within that plot. 
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The expression of the Sentinel-1 (S1) temporal behavior for the study site was through 

VV (dB), VH (dB), and the ratio VV/VH (dB) at the two ranges of incidence angles. 

As synthesized by several studies, there are different factors affecting the radar 

backscatter, as the C-band represents an integration of the backscatter from the ground 

attenuated by the canopy layer, volume scattering, and stem-ground interactions (usually 

negligible for wheat) (Bousbih et al., 2017; Hajj et al., 2017; Navarro et al., 2016). 

In addition to SAR configurations (incidence angle and polarization), the signal is 

affected by soil parameters (soil moisture and surface roughness) (Baghdadi et al., 2018; 

Gao et al., 2017) and the vegetation, which affect the signal by two pathways, the 

attenuation of ground backscatter and direct volume scattering. This vegetation 

contribution is basically driven by the structure, dry matter, and vegetation water content 

(Baghdadi et al., 2017). 

2.2.3. Gaussian decomposition of SAR temporal profiles 

The time-series temporal profiles of the radar backscattering coefficient (σ0) were 

fitted with Gaussian functions. Initially, VV, VH, and VV/VH (dB) were normalized using 

the unity-based normalization in Equation (2), to adjust the values at a common scale 

(between 0 and 1): 

𝑌′ =
𝑌−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
                                                    Eq. 2 

where Y’ is the normalized σ0-value of the radar backscattering coefficient (in VV, VH, 

and VV/VH), Y is the initial value of the time series, Ymin is the minimum value of the time 

series, and Ymax is the maximum value of the time series. 

The normalized profiles (in VV, VH, and VV/VH) were next smoothed using a Gaussian 

filter and then modeled with the sum of Gaussian functions (up to three Gaussians):  

𝑌′ = ∑ 𝑎𝑖
𝑖=3
𝑖=1  𝑒

−
(𝑥−𝑏𝑖)

2

2𝑐𝑖
2  

𝑖 ≤ 3                                         Eq. 3 

where, i is the order of Gaussian, ai is the amplitude of the Gaussian, bi is the Gaussian 

peak position in Julian days, and ci is the standard deviation of the Gaussian in Julian days. 

The least square method was applied to determine the values of ai, bi, ci separately for 

VV, VH, and VV/VH (corresponding to the lowest difference between the smoothed 
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profile and the function sum of Gaussians). To operate the least square method, initial 

values of (ai,bi,ci) are chosen according to a preliminary analysis of the σ0-profiles. 

The number of Gaussian functions necessary to model the smoothed profiles is equal 

to the number of times that the derivative of the smoothed profile changes from positive to 

negative (known local maximums). 

2.3.In Situ observations (reference plots) 

In the West Bekaa plain of Lebanon (Figure 1), field campaigns were conducted on 21 

reference winter wheat plots. For each winter wheat plot, the dates of the three phenological 

phases and the harvesting were noted (Table 1). In addition, as harvesting was expected to 

be sooner in the North Bekaa, eight reference winter wheat plots were selected and their 

harvesting dates were also observed (Table 1). 

Table 1 Dates of the three phenological phases plus the harvesting of the reference plots within the West 

Bekaa (WB) plain as well as for harvesting for North Bekaa (NB) plain. “—“ signifies the unavailable date. 

Plot ID 

Germination 

(Day Month 

Year) 

Heading (Day 

Month Year) 

Soft dough (Day 

Month Year) 

Harvesting (Day 

Month Year) 

1 (WB) — 14 April 2018 27 May 2018 — 

2 (WB) — 14 April 2018 01 June 2018 — 

3 (WB) 
10 December 

2017 
22 April 2018 29 May 2018 13 July 2018 

4 (WB) 
10 December 

2017 
07 April 2018 01 June 2018 13 July 2018 

5 (WB) 
11 December 

2017 
22 April 2018 28 May 2018 20 July 2018 

6 (WB) — 07 April 2018 31 May 2018 — 

7 (WB) 
12 December 

2017 
07 April 2018 27 May 2018 — 

8 (WB) 
11 December 

2017 
22 April 2018 27 May 2018 22 July 2018 

9 (WB) 
13 December 

2017 
21 April 2018 30 May 2018 25 July 2018 

10 

(WB) 
— 07 April 2018 27 May 2018 — 

11 

(WB) 
— 07 April 2018 27 May 2018 10 July 2018 

12 

(WB) 
— 14 April 2018 27 May 2018 — 
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13 

(WB) 
— 06 April 2018 31 May 2018 — 

14 

(WB) 
— 15 April 2018 31 May 2018 — 

15 

(WB) 
— 15 April 2018 28 May 2018 — 

16 

(WB) 
— 14 April 2018 31 May 2018 — 

17 

(WB) 

11 December 

2017 
14 April 2018 28 May 2018 20 July 2018 

18 

(WB) 

10 December 

2017 
14 April 2018 31 May 2018 10 July 2018 

19 

(WB) 
— 06 April 2018 28 May 2018 — 

20 

(WB) 

13 December 

2017 
20 April 2018 30 May 2018 15 July 2018 

21 

(WB) 

11 December 

2017 
20 April 2018 28 May 2018 18 July 2018 

1 (NB) — — — 10 July 2018 

2 (NB) — — — 10 July 2018 

3 (NB) — — — 04 July 2018 

4 (NB) — — — 14 July 2018 

5 (NB) — — — 14 July 2018 

6 (NB) — — — 08 July 2018 

7 (NB) — — — 08 July 2018 

8 (NB) — — — 08 July 2018 

2.4.Meteorological data 

Rainfall products with 1-day revisit time are obtained from Global Precipitation 

Measurement (GPM) sensor, which is the most recent sensor providing precipitation 

readings of up to 30-minutes revisit time (Skofronick-Jackson et al., 2018). The GPM 

mission is used in this study to retrieve rainfall data at 0.1° latitude/longitude (~10 km x 

10 km) over each part (West and North Bekaa) of the study site (Figure 1). As for the 

relative humidity and air temperature, daily data were obtained from two weather stations 

(Ammiq station for West Bekaa and Doures station for North Bekaa), each is located in 

one of the two parts studied. The air relative humidity and temperature data were obtained 

for the three months April, May, and June of the corresponding season (2017–2018) for 
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the sake of explaining the climatic difference among both sites affecting the date of the last 

phenological phase of wheat (i.e., physiological maturity). 

2.5.Software employed and statistical analysis 

Since the proposed approach is operational, the method was performed through free 

open access software. For instance, the radiometric and geometric calibration of the 

Sentinel-1 images were performed using the Sentinel toolbox in SNAP. In addition, the 

Gaussian modelling of the SAR signal was performed using Python scripting 3.6. 

Regarding the statistical analysis, the Root Mean Square Error (RMSE) and the 

difference between the estimated and observed dates (bias) were calculated for each phase 

as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1                                            Eq. 4 

𝑏𝑖𝑎𝑠 =  
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛
𝑖=1                                                Eq. 5 

where Pi is the predicted date and Oi is the observed date, for each reference plot (i) at each 

phenological phase, and the harvesting n is the total number of reference plots. 

2.6.Methodological approach 

The methodological approach toward mapping the highly important three 

phenological phases in addition to the harvesting, throughout the cropping season 2017–

2018, consists of four main steps (Figure 2). 

First, (1) calibration and terrain correction were performed on the downloaded S1 

images to obtain the backscatter in both polarizations (VV and VH) in decibels (dB) in 

addition to the calculation of the ratio VV/VH (dB). Consequently, reference plots were 

selected and the key phenological dates were observed in situ (Section 2.3). Second, (2) 

together with the backscattering data, temporal profiles corresponding to the wheat 

reference plots were constructed to determine the best S1 configuration (optimum 

polarization and incidence angle), allowing the detection of each of the phases. After that, 

using Python scripting, smoothing of the radar backscatter and Gaussian fitting of the 

temporal series were applied on the reference plots in each polarization (VV and VH) and 

for the ratio VV/VH at both, low and high incidence angles (32°–34° and 43°–45°), to 

come up with the most appropriate configuration for mapping each of the phases, and the 

harvesting. 
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Third, (3) on the already classified winter wheat plots in the West Bekaa plain of 

Lebanon, following a proposed classification approach by Nasrallah et al. (2018), 

smoothing and Gaussian fitting were applied on all the winter wheat classified plots (2017–

2018 season). Eventually, in step four (4), after the analysis of the temporal profiles of the 

reference plots, each phenological phase in addition to harvesting (in West Bekaa) was 

mapped using the most appropriate configuration (polarization and incidence angle). In 

Section 3.3, the results of the Gaussian fitting are shown, and each of the phenological 

phases in addition to harvesting are displayed with their corresponding utilized S1 

configurations. 

Eventually, to prove the robustness of the approach, since wheat is harvested earlier in 

the northern part of the plain than its western part, because of weather conditions and the 

wheat varieties, the same approach was performed on the northern part to estimate and map 

the harvesting time, as in West Bekaa. 
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Figure 2 Methodological flowchart of the phenological phase mapping. Low and high incidence angles (IA) 

are used. 

The behavior of S1 temporal profiles in VV, VH, and VV/VH at both incidence angles 

(32°–34° and 43°–45°) were analyzed using the reference plots located in the West Bekaa 

plain of Lebanon for which each winter wheat phenological phase’s date was observed, in 

addition to the harvesting date. This was done to know the most appropriate S1 
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configuration in terms of polarization and incidence angle, in order to map each of the 

phenological phases, in addition to harvesting. 

The NDVI temporal behavior was first interpreted, then compared with the analysis of 

the S1 temporal profiles to show the need of using the S1 data to map the important 

phenological phases and the harvesting dates of wheat. Then, the fitting results were 

illustrated for the S1 data, with the identification of the Gaussians’ positions that were 

needed to perform the mapping. Afterward, since the West and North Bekaa plain have 

different harvesting time, weather data (air temperature and relative humidity) 

corresponding to April, May, and June of 2018 were used in order to analyze this different 

timing in achieving harvesting, between the two parts of the plain. Eventually, the maps of 

the three phenological phase dates (i.e., germination, heading, and soft dough) plus the 

harvesting date were generated for West Bekaa in addition to the harvesting date map of 

North Bekaa. 

3. Results 

3.2.NDVI Temporal profiles 

In this section, the NDVI temporal behavior of winter wheat within each part of the 

Bekaa plain (north and west) are presented (Figure 3). The profiles include on each date, 

the average NDVI ± the standard deviation of the reference plots. Through the field work, 

the dates of sowing and harvesting, in addition to the three phenological phases (i.e., 

germination, heading, and soft dough) that are the focus of this study, are observed and 

represented on the graphs with vertical lines. 
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Figure 3 Winter wheat Normalized Difference Vegetation Index (NDVI) (left y-axis) temporal profiles of 

both parts of the study site (West (a) and North (b) Bekaa) for the 2017-2018 cropping season versus time 

expressed as days after sowing (DAS) on the x-axis. On the temporal profiles, the daily precipitation is 

shown (right y-axis). On each profile, the three main phenological phases are denoted each by a vertical 

line, in addition to sowing and harvesting dates. 

In the area of interest, sowing (red vertical bar) had taken place during the third week 

of November, after some consecutive rain events, ensuring a sufficient soil moisture for a 

good germination. After germination (pink vertical line), winter wheat goes through the 

vegetative cycle. The vegetative cycle includes seedling, tillering, stem elongation 

(jointing), booting, and heading (green vertical bar). After heading, flowering immediately 

occurs to kick off the reproductive cycle of winter wheat. After flowering, milky stage 

follows, followed by soft dough (blue vertical bar), hard dough and then ripening. When 

the crop reaches physiological maturity with no more than 15% of grain moisture, 

harvesting can take place (yellow vertical bar). 

The NDVI has shown maximum values during April, 105 to 145 days after sowing 

(DAS). Except for heading, at which the NDVI values were at saturation level for a period 

of one month (Figure 3a), there was no clear significant indicators for the rest of the phases, 

and the harvesting, appearing in the temporal profile. At germination date, the NDVI had 

already started increasing, the same was observed for the soft dough phase. At harvesting, 

the NDVI values were already at minimum. Similar results were pinpointed in a recent 

study (Veloso et al., 2017). 

3.3.Sentinel-1 temporal profiles 

In this section, the S1 polarizations (VV, VH, VV/VH) at a given incidence angle are 

illustrated to eventually allow the detection of each phenological phase and harvesting. 
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After the analysis of the available configurations, the optimal configurations to map each 

phenological phase and harvesting are illustrated afterward. 

The temporal profiles of VV, VH, and VV/VH (dB) at the two incidence angles (32°–

34° and 43°–45°) are shown in Figure 4. 

  

  

  

  

Figure 4 Winter wheat S1 (left y-axis) temporal profiles, which consist of VV (a and d), VH (b and e) and 

VV/VH (c and f) at low (32°-34°) and high (43°-45°) incidence angles of West Bekaa for the 2017–2018 

cropping season versus time expressed as days after sowing (DAS) on the x-axis. On the temporal profiles, 

the daily precipitation is shown (right y-axis). On each profile, each of the three main phenological phases 

is denoted by a vertical line, in addition to sowing and harvesting dates. 

In Table 2, descriptive statistics in terms of NDVI and SAR backscatter are provided 

for each of the phenological phases. The statistics are thus provided for West Bekaa 

including the mean and the standard deviation of wheat for NDVI and SAR configurations 

(polarizations and incidence angles). 

Table 2 Means ± standard deviations of NDVI and SAR backscatter (σ°) in VV and VH polarizations in 

addition to the ratio VV/VH, at low (32°–34°) and high (43°–45°) incidence angles. 

 Germination Heading Soft dough Harvesting 
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NDVI 0.28 ± 0.07 0.94 ± 0.05 0.48 ± 0.08 0.19 ± 0.01 

VV 32°-34° -10.58 ± -0.43 -13.8 ± -0.75 -9.74 ± -1.02 -12.53 ± -1.18 

VH 32°-34° -19.48 ± -1.6 -18.39 ± -0.67 -16.0 ± -0.96 -21.71 ± -1.44 

VV/VH 32°-34° 8.9 ± 1.5 4.64 ± 0.66 5.75 ± 0.75 9.2 ± 0.4 

VV 43°-45° -8.85 ± -0.75 -14.42 ± -0.57 -11.18 ± -1.36 -14.35 ± -1.12 

VH 43°-45° -21.35 ± -0.91 -19.87 ± -0.92 -15.9 ± -1.09 -22.38 ± -1.3 

VV/VH 43°-45° 8.43 ± 0.99 4.58 ± 0.83 6.65 ± 0.95 7.01 ± 0.51 

3.3.1. Optimal S1 Configuration for Mapping the Three Phenological phases 

(Germination, Heading and Soft dough) 

Figure 4 shows that VV/VH and VV at low incidence angle (32°–34°) (Figure 4c,a, 

respectively) and VH at high incidence angle (43°–45°) (Figure 4e), allowed respectively 

the best detection of germination, heading, soft dough and harvesting. 

In West Bekaa, winter wheat was sown during the third week of November, 2017. By 

looking at the VV/VH (dB) (Figure 4c), germination (pink vertical line) was observed three 

weeks after sowing. This phase was well observed as the ratio VV/VH (dB) was maximum. 

This means that at germination, VV/VH (dB) showed a maximum value before starting 

decreasing. This decrease was sharper at a low incidence angle (32°–34°) than at the higher 

one. For this reason, VV/VH at 32°–34° was selected for mapping the germination. 

By looking at the VV polarization curve (Figure 4a), the signal backscatter fluctuated 

between -12.8 dB and -6.2 dB until the start of March, 2018 (DAS 90) because of continued 

events of rain (Fieuzal et al., 2013). The signal was basically affected by the soil 

contribution (El Hajj et al., 2016) as until then, the canopy height reached a maximum of 

35 cm at DAS 90. After the jointing phase started, the canopies witnessed a growing boot 

at which they began elongating when the nodes started developing above the crown node. 

During stem elongation, the S1 signal in VV polarization decreased as a result of soil 

scattering attenuation caused by vertical stems and leaves (Del Frate et al., 2004). Heading 

(green vertical line) started in West Bekaa at 144 DAS. At heading, the spike (ear) started 

emerging out from the leaf sheath after the upper-most leaf swelled out into flag holding 

the spike into it. At the heading phase (DAS between 144 and 150), where the vegetative 

attenuation was at its extreme (He et al., 2014; Srivastava et al., 2011), the VV backscatter 

was between -15.1 dB and -13.1 dB (lowest level), leading to the best observation of this 
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phase (i.e., heading) in VV polarization at low incidence angle (32°-34°) (Figure 4a). Just 

after heading, anthesis of florets (flowering) and fertilization of ovaries occurred. 

After flowering (post-anthesis phase) and when pollination was complete (DAS 

between 155 and 180), the ovaries started their transformation into seeds (grain filling). 

The process started by increasing moisture levels into the spikelet, passing through milky 

phase and then soft dough phase (blue vertical bar). At soft dough phase, the average VH 

backscatter at high incidence angle (43°–45°) showed a maximum backscatter of -15.9 dB 

at 186 DAS (Figure 4e). Similar to high incidence angle (43°-45°), at low incidence angle 

(32°-34°) (Figure 4b), the signal also showed an increase from heading to soft dough phase 

with a similar maximum signal of -16.0 dB. However, the increase from heading to soft 

dough was sharper at high incidence angle (43°-45°) (ranging from -20 dB to -15.9 dB) 

than at low incidence angle (ranging from-18.4 dB to -16.0 dB). This shaper increase at 

43°-45° was seen because at heading, the VH reached a lower value at the high incidence 

angle, compared to that at low incidence angle. Thus, since the increase from heading to 

soft dough phase at high incidence angle was more significant (sharper) than that at low 

incidence angle, high incidence angle images, when available, are more recommended to 

be used for estimating the date of this phase (i.e., soft dough). 

3.3.2. Optimal S1 Configuration for Mapping Harvesting (West and North Bekaa) 

After the soft dough phase was reached, the grains moisture level started decreasing 

reaching the hard dough phase and then maturation. At maturation phase, the kernels 

became hard and moisture percentage was gradually reduced and the plant could be 

harvested when physiological maturity was reached (yellow vertical bar). This event was 

clearly shown by referring to the VV/VH ratio, as similar to germination phase, the ratio 

VV/VH reached maximum again (Figure 4c). The VV/VH ratio reached a maximum value 

(DAS 228) because of the sharp decrease in the VH polarization because of the absence of 

volume and multiple scattering after harvesting event. 

The harvesting of winter wheat was during the third week of July, 2018 for the plots 

in West Bekaa, while in the first 10 days of July for those in the North Bekaa, this was 

mainly due to weather-related conditions (Figure 5). As the reproductive phase started 

(after DAS 150), the canopies dried down and canopy water content was reduced. As the 
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temperature was higher and the air relative humidity was lower, the rate of canopy water 

content reduction was higher, leading to an early harvest (Mrema, 2011). Regarding the 

ratio VV/VH, throughout the whole season, the effect of rain was reduced for the two 

regions and therefore the signal fluctuations because of rain were not observed as for VV 

and VH alone. The VV/VH (dB) profile decreased (Figure 4c) until heading. After heading, 

the VV/VH increased until harvesting took place. As the sharpest increase from soft dough 

to harvesting was seen in VV/VH (dB) at a low incidence angle (32°-34°) (from around 

5.8 until 9 dB, Figure 4c), while at high incidence angle (43°-45°), the increase seen from 

soft dough to harvesting was from around 6 to 7 dB. Thus, VV/VH (in dB) at low incidence 

angle was chosen to map harvesting in both parts (West and North Bekaa plain). 
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Figure 5 Air relative humidity (left y-axis) and temperature (right y-axis) versus date (x-axis) for both parts 

(West and North Bekaa). The data correspond to the period from heading until physiological maturity 

(April through June). 

By referring to Figure 5, the difference in air temperature (Ta) and air relative humidity 

(RH) among both parts was seen over April, May, and June of the corresponding year 

(2018). In North Bekaa, the monthly averages RH for the three months were 48.7, 50.6, 

and 45.1, respectively. As for the west part, the RH was higher, showing values of 58.2, 

58.5, and 54.1 for the same three months, respectively. Regarding the Ta, both parts 

witnessed similar average temperature in April of 15 °C, but slightly lower Ta in the west 

part for May and June (19°C and 21 °C) than the Northern part (19.3 °C and 22 °C), for 

the same months. 

3.4.Smoothing and Gaussian fitting 

The automated method for phenology phase dates estimation was applied on S1 data. 

After performing the smoothing and Gaussian fitting on S1 data, the fitting output 

parameters were obtained automatically and used to map the three phenological phase dates 

as well as the harvesting date. Figures 6, 7, and 8 illustrate an example of the smoothed 

profile and the Gaussian fitting used to model the S1 data to estimate the dates of each of 

the phenological phases. Figure 6 corresponds to the output of the smoothing and Gaussian 

fitting of the VV/VH at low incidence angle (32°–34°) for estimating germination and 

harvesting dates, Figure 7 corresponds to the output of the smoothing and Gaussian fitting 

of the VV polarization at low incidence angle for estimating the heading date, and Figure 
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8 corresponds to the VH polarization smoothing and Gaussian fitting to estimate the soft 

dough date, at a high incidence angle (43°–45°). 

 
Figure 6 Gaussian fitting of the S1-VV/VH temporal series of a winter wheat plot at the West Bekaa plain 

of Lebanon. The incidence angle is 32°–34°. The x-axis represents the date and the y-axis refers to the 

normalized signal. The black arrows indicate the inflection points where germination and harvesting had 

taken place. 
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Figure 7 Gaussian fitting of the S1-VV temporal series of a winter wheat plot at the West Bekaa plain of 

Lebanon. The incidence angle is 32°–34°. The x-axis represents the date and the y-axis refers to the 

normalized signal. The black arrow indicates the inflection point where heading had taken place. 

 
Figure 8 Gaussian fitting of the S1-VH temporal series of a winter wheat plot at the West Bekaa plain of 

Lebanon. The incidence angle is 43°–45°. The x-axis represents the date and the y-axis refers to the 

normalized signal. The black arrow indicates the inflection point where soft dough had taken place. 
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Table 3 explains the way in which the phenological phases (germination, heading, soft 

dough, and harvesting) were automatically detected from the Gaussian fitting. The 

detection of each phase is accompanied with the best S1 configuration (i.e., incidence angle 

and polarization). For each phase, the best SAR configurations already determined through 

the analysis of S1 temporal variations (Section 3.2), are considered. 

Table 3 The best S1 configuration (polarization and incidence angle) for phenological phases (i.e., 

germination, heading and soft dough) and harvesting mapping in addition to the way of determination for 

each. 

Phase Polarization 
Incidence 

angle 
Way of determination 

Germination VV/VH 32°–34° 
First peak in the sum of Gaussians fitting 

(positive derivative) 

Heading VV 32°–34° 

First minimum after germination in the sum of 

Gaussians fitting (identification starts after 

germination date) 

Soft dough VH 43°–45° 

First maximum after heading in the sum of 

Gaussians fitting (identification starts after the 

heading date) 

Harvesting VV/VH 32°–34° 

Last maximum after soft dough in the sum of 

Gaussians fitting (identification starts after soft 

dough date) 

 

In practice, after the first peak in the sum of Gaussians fitting (positive derivative) was 

found (using VV/VH) and the germination dates for each of the plots were assigned, the 

next step was to find the heading dates, which is the phase that follows. On the VV 

Gaussian fitting of all the wheat plots, the first negative derivative peak in the sum of the 

Gaussians fitting, which comes after the last recorded date of germination, was assigned as 

the heading date, for each plot. On the VH Gaussian fitting of all the wheat plots, the first 

positive derivative peak in the sum of Gaussians fitting, which is located after the last 

recorded heading date, was assigned as a soft dough date, for each of the plots. Eventually, 

relying on the VV/VH, the harvesting date was found as the last positive derivative peak 

in the sum of Gaussians fitting. The harvesting date was determined after the last recorded 

date for soft dough. 

3.5.Germination, heading, soft dough, and harvesting mapping 

Figure 9 shows for each wheat plot the date of each phenological phase for West Bekaa 

(WB) (maps corresponding to germination, heading, soft dough, and harvesting). For North 

Bekaa (NB), the produced map corresponds to harvesting only as for the other phases the 
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timing is similar as the West Bekaa. Each phenological phase stretched up to up to few 

weeks. For this reason, in each generated map (Figure 9), a color bar was added in which 

a unique color code is assigned for each 6 days. For instance, since first recorded 

germination date in the West Bekaa was on 21 November 2017, then all plots who achieved 

germination from 21 November 2017 until 26 November 2017, have the same color code, 

and so on. This allowed a better comparison and statistical analysis afterward. In addition, 

6 days is the revisit time for Sentinel-1 satellites (1A and 1B). For germination in West 

Bekaa, the obtained dates were from 21 November 2017 until 20 January 2018, 

corresponding to ten color codes. For heading in West Bekaa, the obtained dates were from 

21 March 2018 until 4 May 2018, corresponding to 8 color codes (except the last one, 

including 3 days from 2 until 4 May 2018). For soft dough in West Bekaa, the obtained 

dates were from 10 May 2018 until 19 June 2018, corresponding to 7 color codes (except 

the last one, including 4 days from 16 until 19 June 2018). For harvesting in West Bekaa, 

the obtained dates were from 29 June 2018 until 16 August 2018, corresponding to eight 

color codes. Eventually, for harvesting in North Bekaa, the obtained dates were from 13 

June 2018 until 13 August 2018, corresponding to ten color codes, each is of 6 days (except 

the last one, including 3 days from 7 until 9 August 2018) (Figure 9). 
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Figure 9 Maps of the three phenological phases’ dates and the harvesting for West Bekaa (WB) and 

harvesting for North Bekaa (NB) extracted from S1 Gaussians fitting parameters. For each map, the color 

bar reflects the time of achieving each phase by each winter wheat plot. 

It is important to note that the whole time period for each phenological phase, in 

addition to harvesting, does not mean that the winter wheat in the Bekaa plain needs this 

relatively long time (e.g., 2 months for harvesting in North Bekaa) to achieve a particular 

phase. The color code bars on the maps reflect the first estimated date until the last 

estimated date. In the following section, the density of each 6-day period (percentage of 

wheat plots per each 6 days) is demonstrated. 

3.5.1. Accuracy Assessment and Quantitative Analysis 

After detection each of the three phenological phases for West Bekaa and harvesting 

event for both West and North Bekaa from S1 Gaussians fitting, the obtained (estimated) 

dates of each phenological phase and the in situ observations (observed dates) were 

compared in order to evaluate the precision of the phenological phases detecting approach, 

using S1 data. The RMSE and the difference between the estimated and observed dates 

(bias) were calculated for each phase (Figure 10). 
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Figure 10 The estimated versus the observed dates recorded in situ for the three phenological phases and 

the harvesting. The phases correspond to germination (a), heading (b), and soft dough (c) for West Bekaa, 

in addition to the harvesting event for both West (d) and North (e) Bekaa. The Root Mean Square Error 

(RMSE) and the difference between the estimated and the observed dates (bias) are displayed on each of 

the graphs. The blue dots represent the dates and the red line corresponds to 1:1. 

By analyzing the RMSE values, the germination and harvesting for West Bekaa have 

shown the least RMSE with 2.9 and 3.0 days, respectively. Heading and soft dough phases, 
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for the same part of the plain, have shown higher RMSE of 5.5 and 5.1 days, respectively. 

As for the North Bekaa, 4.5 days of RMSE was observed for harvesting event. In addition, 

a slight negative bias corresponding to an underestimation was observed for germination 

and heading with -0.2 and -1.1 days, respectively. As for the soft dough and harvesting for 

West and North Bekaa, an overestimation was observed with 3.1, 0.6, and 3.6 days, 

respectively. 

Table 4 shows the percentage of the winter wheat plots within each 6-day period. For 

better comparison regarding the harvesting of the West and the North Bekaa, same periods 

(6-day period) are assigned for both. 

Table 4 Winter wheat plots’ percentages for each mapped phenological phase of West Bekaa plus the 

harvesting of West (WB) and North (NB) Bekaa, in each 6-day period. 

Event 
Corresponding period 

(Day Month Year) 

Percentage of plots 

(%) 

Germination (WB) 21 November 2017-27 November 2017 2.0 

 27 November 2017-03 December 2017 4.7 

 03 December 2017-09 December 2017 11.0 

 09 December 2017-15 December 2017 14.8 

 15 December 2017-21 December 2017 18.3 

 21 December 2017-27 December 2017 18.0 

 27 December 2017-02 January 2018 17.2 

 02 January 2018-08 January 2018 8.0 

 08 January 2018-14 January 2018 3.5 

 14 January 2018-20 January 2018 2.5 

   

Heading (WB) 21 March 2018-27 March 2018 4.2 

 27 March 2018-02 April 2018 10.2 

 02 April 2018-08 April 2018 16.0 

 08 April 2018-14 April 2018 22.0 

 14 April 2018-20 April 2018 19.1 

 20 April 2018-26 April 2018 15.8 

 26 May 2018-02 May 2018 10.9 

 02 May 2018-04 May 2018 1.8 

   

Soft dough (WB) 10 May 2018-16 May 2018 6.3 

 16 May 2018-22 May 2018 13.3 

 22 May 2018-28 May 2018 26.2 

 28 May 2018-03 June 2018 32.0 

 03 June 2018-09 June 2018 15.8 

 09 June 2018-15 June 2018 5.4 

 15 June 2018-18 June 2018 1.0 

   

Harvesting (WB) 14 June 2018-20 June 2018 0 

 20 June 2018-26 June 2018 0 

 26 June 2018-02 July 2018 0.3 
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 02 July 2018-08 July 2018 2.5 

 08 July 2018-14 July 2018 12.2 

 14 July 2018-20 July 2018 27.5 

 20 July 2018-26 July 2018 40.4 

 26 July 2018-01 August 2018 12.1 

 01 August 2018-07 August 2018 3.8 

 07 August 2018-13 August 2018 0.9 

 13 August 2018-16 August 2018 0.3 

   

Harvesting (NB) 14 June 2018-20 June 2018 0.5 

 20 June 2018-26 June 2018 1.3 

 26 June 2018-02 July 2018 5.5 

 02 July 2018-08 July 2018 15.6 

 08 July 2018-14 July 2018 29.2 

 14 July 2018-20 July 2018 28.7 

 20 July 2018-26 July 2018 11.2 

 26 July 2018-01 August 2018 4.5 

 01 August 2018-07 August 2018 2.2 

 07 August 2018-13 August 2018 1.3 

 13 August 2018-16 August 2018 0 

According to Table 4, during germination, around 79% of the plots had completed 

germination between 3 December and 2 January 2018, which is very logical due to the 

already known period of sowing, which was during the third week of November, of the 

same year. As for heading phase, around 73% of the plots had completed heading between 

2 and 26 April 2018. For soft dough phase, around 88% of the plots had achieved this phase 

between 16 May and 9 June 2018. As for harvesting, the difference in timing between the 

two parts of the Bekaa plain was observed. The average date of harvesting in West Bekaa 

is 20 July 2018, while for the North Bekaa, 13 July 2018. In addition, 85% of the wheat in 

the North Bekaa was harvested between 2 and 26 July 2018, while for the West Bekaa, 

92% of wheat was harvested between 8 July and 1 August 2018. These results are very 

typical for the Bekaa plain and explain the difference in harvesting time among the West 

and North Bekaa, because of the weather conditions as explained in Section 3.2.2. 

3.6.Toward near-real time phenology monitoring 

The proposed method is built on the basis of understanding the crop’s phenology by 

modelling the temporal series of the crop (winter wheat for our case) with Gaussian 

functions to estimate the phenological phases’ dates. However, for real time and near-real 

time operational phenology monitoring, we will assume in this section, for each 

phenological phase (in West Bekaa), that the whole temporal series was not available. This 

is to test with the available Sentinel-1 images and reference plots the error of estimation 
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(RMSE) when the temporal series is considered until the date of the phenological phase, 6, 

12, and 18 days after the phenological phase is achieved. In Table 5, we demonstrate for 

each phenological phase the new difference between estimated and observed dates (bias) 

and RMSE together with the percentage of plots for which the dates of each phenological 

phase could be estimated. 

Table 5 The difference between the estimated and observed dates (bias), the RMSE of the estimated 

phenological date, and the percent (%) of reference plots for which the date of the different phenological 

phases could be estimated when the time series ended on the date of the phenological phase, 6, 12, and 18 

days later. 

 No image 1 S1 image 2 S1 images 3 S1 images 

 Bias 

RMS

E 

(days) 

%ref 

plots 
Bias 

RMS

E 

(days) 

%ref 

plots 
bias 

RMSE 

(days) 

%ref 

plots 
bias 

RMSE 

(days) 

%ref 

plots 

Germination 14.0 20.8 80 12.9 19.1 80 13.5 18.6 80 7.9 9.6 100 

Heading -17.4 19.1 76.2 -13.3 15.3 81 -8.6 14.7 81 -4.6 11.1 81 

Soft dough 5.7 10.9 85.7 5.9 10.5 85.7 3.2 6.1 100 3.1 6.1 100 

Harvesting -10.7 11.7 60 -8.7 11.3 70 -3.7 3.9 70 1.9 3.9 70 

4. Discussion 

4.2.S1 versus NDVI temporal behavior 

The winter wheat Sentinel-2 (optical) and Sentinel-1 (SAR C-band) remote sensing 

temporal profiles are shown in Figures 3 and 4. One of the most noticeable aspect is the 

high sensitivity of SAR temporal behavior to winter wheat growth cycle, in comparison to 

the NDVI temporal series (Veloso et al., 2017). The crop seasonal cycle is broken down 

into five periods and each is investigated and discussed. 

From day 0 to day 90 after sowing, the NDVI (Figure 3) started increasing sharply just 

after the crop emergence, as it is therefore correlated to the greenness of the canopies 

(Duchemin et al., 2006; Labus, 2010; Wang et al., 2011). Consequently, the VV and VH 

polarizations temporal profiles witnessed a fluctuation over this period. This is because the 

S1 backscatter is highly sensitive to soil moisture, as in this period continued rainfall events 

were recorded and thus explaining that both VV and VH polarizations are affected mostly 

by variations in the soil backscatter driven by soil water content (SWC) only, as surface 

roughness does not change significantly from sowing to harvesting date (Baghdadi et al., 

2018, 2017; Hajj et al., 2017). The VV/VH temporal profiles (Figure 4) reduce the 

dependence of the radar signal on soil moisture especially after a rain event. Indeed, the 

effect of soil moisture is not completely eliminated with VV/VH since the sensitivity of 

the radar signal in the C-band to soil water content is slightly different in VV and in VH 
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polarizations (Baghdadi et al., 2006). In addition, VV/VH showed a mild decreasing trend, 

from after germination until heading. This decrease of VV/VH with time, was mainly due 

to the reduction of the difference between the signal radar at VV and that at VH, caused by 

increased vegetation volume (Lopez-Sanchez et al., 2013; Wiseman et al., 2014). 

From DAS 90 to DAS 105, the NDVI (Figure 3) profile kept on increasing steadily as 

the photosynthetic activity, LAI and canopies stems number and their height continuously 

increased in this period. In regard to the radar backscatter, fluctuations in both VV and VH 

polarizations (Figure 4) faded away and a decrease in the backscatter was observed for two 

main reasons. First, soil moisture decreased because of no rain events that led to weaker 

soil contribution, and second, in this period, wheat canopies were tillering and jointing, 

leading to increased LAI and thus causing more soil backscattering attenuation (Brown et 

al., 2003). 

From DAS 105 until heading was achieved (DAS 138-144), a maximum saturation in 

the NDVI (Figure 3) was observed, which is an already known limitation that has been 

already described previously (Baghdadi et al., 2017; Sellers, 1985). This is attributed to the 

highly dense vegetation (maximum LAI). Per contra, both VV and VH polarizations 

(Figure 4) kept on their continuous sharp decrease to reach the minimum observed 

backscatter. In this period (DAS 105 until heading), VV decreased faster and sharper than 

the VH. At the heading period (appearance of ears), the direct vegetation scattering was 

low and the attenuation of the soil contribution was high. This is explained by the ratio 

(VV/VH) as the minimum value was reached at heading time (Figure 4). 

From 144 DAS (heading) till 186 DAS (soft dough), the NDVI sharply decreased as 

the canopies dried up and the photosynthetic activity was over. The green color started 

turning into yellowish and retrenchment of leaves and stems was observed. While on the 

other hand, in the VV and VH polarizations (Figure 4), an increase in the backscatter was 

seen to reach a maximum point. Regardless the incidence angle and the polarization, the 

main mechanisms taking place in the backscatter are attributed to leaves and ears 

backscatter (volume scattering) which is in agreement with previous studies (Brown et al., 

2003; Mattia et al., 2003; Picard et al., 2003). In addition, as demonstrated in the previous 

section, in this period, grain filling process was taking place and moisture level was 

increasing in the wheat ears during the post-pollination stage. The canopy was well 
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developed and the soil contribution was very low (also the stem-ground interaction), 

meaning that the VV and VH backscatter thus could be also increased by the rising ears 

moisture level and not by soil contribution, contradicting earlier study (Mattia et al., 2003). 

Consequently, the ratio (VV/VH) was constant with a slight increase as VH backscatter 

was more attenuated by the vegetation (Mattia et al., 2003; Veloso et al., 2017). 

From soft dough to harvesting, the sharp decrease in the NDVI turned into a softer one 

as the rate of “greenness” fading away had sharply decreased and physiological maturity 

was being achieved. As for the SAR behavior, a soft decrease was seen in the VV 

polarization, because of decreasing moisture levels in the canopies heads and the moisture 

within the grains had dried up. As for the VH, which is more affected by vegetation 

contribution, the decrease was sharper. Consequently, the ratio (VV/VH) continued on 

increasing as fresh biomass was decreasing until physiological maturity (harvesting time). 

4.3.Influence of S1 incidence angle 

Through the examination of the different incidence angles, three phases are discussed, 

namely germination, heading, and soft dough in addition to physiological maturity 

(harvesting), in both VV and VH polarizations and the ratio VV/VH: 

1) In VV polarization: From the start of jointing till heading (84 DAS until 144 DAS), 

the decrease in the signal at 32°–34° incidence angle was steeper and sharper than 

at the higher incidence angle (43°–45°) because at high incidence angle, in addition 

to the attenuation, there is the smaller direct vegetation contribution (Balenzano et 

al., 2011). In addition, at 40° of incidence angle and beyond, the direct vegetation 

volume scattering appears (Mattia et al., 2003). From 144 DAS until 186 DAS (soft 

dough), the signal increased at the two incidence angles. However, at soft dough 

phase (186 DAS), different behaviors were significantly recorded among the two 

ranges of incidence angles. On this date (186 DAS), the backscatter at 43°–45° was 

slightly higher than that at 32°–34° (Figure 4a,d) by around 1.5 dB, meaning that 

at the soft dough phase, at the 43°–45° incidence angle, the signal held more canopy 

contribution than the radar signal did at lower incidence angle (32°–34°). Such a 

behavior can be explained by the fact that after heading had occurred, the soil 

contribution, which was a dominant backscattering mechanism was considerably 

reduced and the canopy backscatter became more significant (at 43°–45°). This 
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finding is noted by different previous studies (Balenzano et al., 2011; Brown et al., 

2003; Mattia et al., 2003; Picard et al., 2003). At harvest, the two incidence angles 

showed similar σ°. 

2) In VH polarization: As wheat canopies reached heading phase, the S1 backscatter 

at high incidence angle reached lower levels than at low incidence angle (Figure 

4b,e). This showed a sharper increase of the S1 signal from heading to soft dough 

at high incidence angle than at low incidence angle. This is the reason why mapping 

this phase (soft dough) using high incidence angle (43°–45°) was more appropriate. 

Hence, as stated before (section 3.3), the VH polarization has been seen as a better 

configuration through the analysis of the S1 temporal profiles for estimating the 

soft dough date. However, for easier operational application, VH polarization at 

low incidence angle (32°–34°) could still be used. Nevertheless, when VH at 32°–

34° was used to map the soft dough phase, the soft dough could not be detected for 

around 10% of the wheat plots. In addition, the detection of the soft dough phase 

using 32°–34° showed that for about 18% of the wheat plots, a different soft dough 

date estimation was observed of at least 6 days, in comparison to the one estimated 

at high incidence angle. 

Figure 11 shows an example to detect the soft dough phase for the same wheat plot, 

one at 32°–34° and one at 43°–45° incidence angle. It highlights the difference in the fitting 

(Gaussian) of a VH temporal profile to detect the soft dough phase. 
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Figure 11 Gaussian fitting of a winter wheat plot at 32°–34° (a), and 43°–45° (b), in the VH polarization. 

The black arrow indicates the soft dough phase. 

In the VH polarization at low incidence angle (Figure 11a), the soft dough phase could 

not be detected through the Gaussian fitting, unlike Figure 11b. As discussed before, 

through the analysis of the temporal profiles (Figure 4), the increase from heading to soft 

dough was sharper at higher incidence angle (43°–45°). Indeed, for some wheat plots, the 

fitting process did not fit a Gaussian at the level of soft dough because the increase from 

heading to soft dough was not significant enough. 

3) In VV/VH ratio: The steady mild decrease from sowing to heading in the ratio 

VV/VH (dB), which was seen at the two incidence angles (32°–34° and 43°–45), 

is mainly related to the slight increase in the VH (mainly from sowing till the 

beginning of March). The VH backscatter is dominated by the volume scattering 

mechanisms, increased as reported previously (Lopez-Sanchez et al., 2013; Veloso 

et al., 2017; Wiseman et al., 2014) while however, the VV backscatter, which is 

dominated by the direct contribution from the ground and the canopy decreased 

because of the rising attenuation from the predominantly vertical structure of the 

wheat stems (Brown et al., 2003), especially from March (96 DAS) through 

heading, during the stem elongation. From heading to soft dough phase, the ratio 

(VV/VH) was more or less constant at the two incidence angles (32°–34° and 43°–

45°) as the signal in both VV and VH equally increased throughout this period as 

explained before (section 3.3). From soft dough to harvesting, VV/VH (dB) at low 

incidence angle had shown a more significant dynamics than at high incidence 

angle. Thus, harvesting was observed when VV/VH (dB) at low incidence angle 

increased to reach the maximum. 

4.4.Wheat phenology mapping 

The germination map contains ten 6-day periods of wheat plots’ germination dates. 

The different timing of germination was strongly dependent on the time of sowing. Almost 

90% of the plots in both West and North Bekaa achieved germination throughout 

December, 2017 (Table 4). This result is reasonable and logical as wheat plots were mainly 

sown between mid-November and the first week of December of 2017, knowing that wheat 

seeds start their germination 10 days after sowing (Lunn et al., 2002), up to one month 

depending on the weather, soil and variety. As for heading time (Figure 9), the estimated 
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dates showed that around 73% of the wheat plots (Table 4) achieved heading between 2 

and 26 April 2018. In the area of interest (the Bekaa plain of Lebanon), this period is a 

typical heading period (Nasrallah et al., 2018). The third mapped phenological phase after 

heading was the soft dough phase. By looking at Figure 9 and Table 4, around 88% of 

wheat plots achieved soft dough between 16 May and 9 June 2018. As for harvesting event, 

in West Bekaa (WB), harvesting took place between 2nd and the 3rd weeks of July, 2018. 

As for the North Bekaa, the same event took place around one week earlier (Table 4). 

This difference is explained by weather and wheat varieties. According to Figure 5, 

the higher air relative humidity in the West Bekaa compared to North Bekaa could be 

responsible for the late harvesting of wheat. In fact, at harvesting, it is well recommended 

to reach a grain moisture content of 11%–14% (Mohammed et al., 2013), a level that is 

achieved faster in areas with lower air relative humidity as North Bekaa. In addition to that, 

it was also seen from Figure 5 that the temperature over the last few months of the season 

was slightly higher for North Bekaa, which could also help in faster grain moisture level 

reduction. Apart from weather conditions, wheat varieties do affect the length of the 

season. According to the survey conducted at the plain, farmers in the north part relied on 

the landraces distributed by the Lebanese Agricultural Research Institute (LARI), which 

have a relatively shorter season than those varieties cultivated in the west part (e.g., 

Saragolla and Normano). 

Our results have shown that indeed, winter wheat phenological phases are directly 

interrelated. Those plots which have witnessed early germination, achieved heading early 

(10 April 2018), while those which have witnessed a late germination, witnessed a late 

heading (20 April 2018). Plots that achieved early heading reached soft dough phases 

earlier than those which achieved late heading (25  May and 1 June, 2018, respectively). 

Eventually, winter wheat plots that finished soft dough early were harvested earlier than 

those finished soft dough late (14 July and 25 July, 2018, respectively). 

4.4.1. Quality indicator, strengths, and perspectives 

The quality indicators used in this study are the Root Mean Square Error (RMSE) and 

the difference between the estimated and the observed dates (bias) for each phenological 

phase. The RMSE and the bias results were satisfactory (less than 6 days for all the 
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phenological phases). Each of germination, heading and soft dough lasted for up to few 

days, thus achieving an estimated date with an RMSE of maximum 5 days was satisfactory 

for the needed interventions. As for harvesting, farmers take few days for storing their grain 

yield and moving them to warehouses. In addition, the maximum RMSE was less than the 

Sentinel-1 revisit time (6 days). As for the bias, a slight underestimation (negative bias) 

was observed for germination and heading (-0.2 and -1.1 days, respectively). This is 

basically because the field campaigns could not be scheduled every day, leading to a 

relatively late observation for some plots of an already achieved phase. As for the soft 

dough and harvesting for West and North Bekaa, the bias was positive (3.1, 0.6, and 3.6, 

respectively), thus an overestimation was noted. For soft dough, the reason could be that 

because soft dough phase normally lasts for some days before hard dough starts, the date 

was estimated by our approach when the dough-like grain was more dry than when 

observed in situ. As for harvesting, the dates could be overestimated because of the date 

reporting-error by farmers, as some of them were contacted to ask for harvesting date. 

However, recording the real dates on the field is challenging and leads to bias when 

comparing it with the estimated dates. Wheat plots, especially big ones, do not have a 

unified time in which canopies within the plot reach the same phenological phase at one 

time, which highly depends on the plot slope, sunlight, water availability, and agricultural 

practices. Still, it is important to note that organizing campaigns to the study area at the 

perfect timing could be complicated, thus, the recording of a particular phase could be late 

by few days. 

The proposed automated phenology mapping approach has been proven to be robust. 

Since in the North Bekaa the wheat was harvested earlier, the approach was automatically 

applied on the North Bekaa and the results were satisfactory by looking at the low RMSE. 

In addition, the intra-relationships between the phases along the phenology as a whole were 

well seen and strongly related, since the timing of each phenological phase affected the 

timing of the one that follows (Section 3.4.1). 

It is clear that when fitting the whole (full) temporal series with Gaussian functions, 

the RMSE is significantly lower than when fitting until the date (or a close date) of the 

phenological phase. However the RMSE of the phenological phases and harvesting when 

fitted until a date close to the phenological phase is promising. In addition, the bias 
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(difference between estimated and observed dates) is significantly higher when the 

temporal series is fitted with Gaussian functions to estimate the dates of the phenological 

phases. Both heading and soft dough phases’ dates were underestimated unlike germination 

and harvesting (overestimated). 

Actually, it is a matter of the type of operational use and how much one is willing to 

compensate for the error for having a near-real time monitoring. In addition, for future 

work, putting extra efforts on this matter is recommended, by having a higher number of 

reference plots for a better insight on the achievable RMSE for the sake of real time and 

near-real time phenology monitoring. 

Wheat is a very important crop and exists in different species (e.g., durum, spelt, 

emmer, einkorn…etc.). Since the radar signal depends mainly on the crop morphology, 

different species sharing the same season (having a similar morphology as the studied case) 

have a strong potential to be monitored phenologically, following the proposed approach. 

However, for the wheat species that are cultivated over a different season (e.g., spring 

wheat), further investigation will be carried out. Since the radar signal is basically sensitive 

to soil moisture (when the NDVI is less than 0.7), the rainfall should be closely observed 

in parallel with observing the dates of each of the phenological phases. In these cases, the 

dependency on the NDVI might increase when precipitation takes place 

5. Conclusions 

Mapping winter wheat phenology using S1 data was proposed in this study. Using 

SAR S1 (C-band data) with field observations allowed us to estimate and map the dates of 

three important phenological phases of wheat plus the harvesting event, because of their 

importance and relevance to decision making and farmers’ interventions. The Root Mean 

Square Error (RMSE) calculated for each of the phases in West Bekaa revealed the values 

of 2.9, 5.5, 5.1, 3.0, and 4.5 days for germination, heading, soft dough, harvesting for West 

Bekaa, and harvesting for North Bekaa, respectively. In addition, a slight underestimation 

was observed for germination and heading dates of West Bekaa (-0.2 and -1.1 days, 

respectively) while an overestimation was observed for soft dough of West Bekaa and 

harvesting for both West and North Bekaa (3.1, 0.6 and 3.6 days, respectively). Moreover, 

we have also observed that early germination had led to early heading, early heading had 

led to early soft dough, early soft dough had led to early harvesting, and vice versa. 
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The three main strengths of the mapping approach proposed in this study are: 1) 

Automation through Python scripting that has led to fast results generation, 2) robustness 

when mapping harvesting on a different site with different harvesting dates, and 3) 

adaptation to the strong intra-relationships between winter wheat phenological phases 

(germination, heading, soft dough, and harvesting) as the date of achieving each phase has 

affected the following phases. 

To test to what extent the approach can be reliable when a non-full temporal series was 

fitted, a sensitivity analysis was conducted. It was found that the RMSE and bias 

significantly increased when the temporal series were fitted until the phenological phase’s 

date, 6, 12, and 18 days after. However, the values are still promising, yet more efforts are 

required on this matter. 

In future work, extending the methodology to other important crops (e.g., potato, 

maize, other cereals and vineyards) on different sites in the Mediterranean area is the main 

target to be achieved, to be eventually merged with crop modelling systems, especially 

when on-field verifications are not easily implemented and/or when they are very costly. 

Moreover, following our approach, if there will be a shift in the standard dates of the 

phenological phases (because of weather conditions), regional mapping of this shifting will 

be possible with reduced budgets for physical check. Nevertheless, coupling our automated 

approach with simulation crop models, especially those which simulate crops’ growth 

depending on the phenology (e.g., CropSyst) could be very beneficial, and would 

nonetheless lead to decreased simulations’ uncertainties. 
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1. Motivations and objectives 

Many previous studies have discussed the different impacts of wheat-based cropping 

systems indifferent soil and climate conditions, rotations and management options. 

However, many of these studies focused often on one crop (or one cropping system) versus 

different performance variables, or different crops (or different cropping systems) versus 

single performance variable (e.g. yield). In the Bekaa plain of Lebanon, several wheat-

based cropping systems co-exist with different biophysical (soil and climate) and 

management (agricultural practices) conditions. Hence, a related key question is raised on 

their performance (productivity and environmental efficiency). 

Consequently, the objectives in this study are: (1) Investigate the effect of the rotation types 

(wheat-wheat, wheat-potato, wheat-fallow and wheat-fava bean) and the effect of 

agricultural practices (water and nitrogen inputs). (2) Evaluate the performance of each 

cropping system (of rotation type and agricultural practices) in terms of performance 

(productivity and efficiency). (3) Assess the economic risk of each cropping system.  

Scenarios concerning different existing wheat-based cropping systems (rotation type and 

wheat management) in two soil water holding capacity classes were constructed and run, 

by using calibrated CropSyst model, against historical long-period climatic data (i.e. 20 

years). Eventually, based on the model outputs, we (i) identify the effects of rotation and 

agricultural practices on winter wheat grain yield, (ii) evaluate the productivity of each 

cropping system with respect to the wheat efficiency in utilizing the resources, and finally 

(iii) scheme the link between the performance and the economic risk of low relative 

production of each of the tested cropping systems, simultaneously. 

Overall an operational guide-map is elaborated, allowing policymakers and producers to 

identify the most performant cropping systems with reference to productivity (i.e. net profit 

and protein production), efficiency (water and Nitrogen) and the economic risk of low 

relative production.  

2. Study site 

The Bekaa plain of Lebanon is located between 33°33’ N and 33°60’ N latitude, 35°39’ E 

and 36°14’ E longitude. The average area of the plain is around 860.25 Km² with an 

average elevation of 1000 above sea level. Similar to other plains in the southern 
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Mediterranean (e.g. Plains of Sétif in Algeria (Hafsi et al., 2000), the Saïs plain in Morocco 

and the Medjerda plain of Tunisia (Burgers and Zoomers, 2014)), the Bekaa is 

characterized by a semi-arid Mediterranean climate and the average annual precipitation is 

around 600 mm. In addition, agriculture is the main economic scheme as field crops, 

orchards, annual and perennial plants are cultivated. Field crops areas (e.g. cereals, 

vegetables and legumes) range from 0.1 ha to up to 20 ha. 65% of the national cereal 

production is being produced in the Bekaa plain, while wheat areas in the plain correspond 

to 44% of the national wheat area, occupying zones ranging from 9000 to 12000 ha 

annually. 

3. Methodological approach 

The general objective of this study is to establish a tradeoff analysis of the existing cropping 

systems by considering their rotational and management diversity. In order to achieve this 

objective, the methodological approach is composed of the following steps: 

(1) The biophysical simulation model “CropSyst” is used to simulate production, 

nitrogen use and water use, on rotational level. To do so, CropSyst had to be 

calibrated and validated, thus following is done: 

a- Wheat reference plots are selected on shallow and deep soils. 

b- Noting the agricultural practices of the reference plots. 

c- Above Ground Nitrogen (AGN), Dry Matter Production (DMP) and Soil Water 

Content (SWC) are measured at four physiological stages and replicated three 

times within each winter wheat plot. 

d- Conducting survey inquiring information of potato and fava bean including 

sowing and harvesting dates, management and yield. In addition, average costs 

and prices are acquired for the last 5 years. 

e- Weather data collected on precipitation, maximum and minimum air 

temperature and incoming solar radiation from, 1997 to 2017. 

(2) After reaching a satisfactory agreement between the predicted and simulated 

outputs (DMP, SWC and AGN), the cropping system scenarios are set and run over 

the 20-year period. The scenarios consist of a combination of : 

a- Crop type (wheat, potato, fallow and fava bean) 
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b- Two soil types (shallow, deep) 

c- Different water and nitrogen management options (quantity and timing) 

d- Selected wheat based rotation types: wheat-wheat, wheat-potato, wheat-fallow 

and wheat-fava bean. 

(3) The outputs of the simulations are used to calculate different indicators: 

a- Productivity indicators: 

i. Net profit (based on production, costs and prices) 

ii. Protein production (based on yield and the protein relative content) 

b- Efficiency indicators: 

i. Water Use Efficiency (WUE) (based on yield and evapotranspiration) 

ii. Nitrogen Use Efficiency (NUE) (based on AGN, nitrogen input and soil 

mineralization) 

iii. Apparent Recovery Efficiency by Difference for water (AREDW) (based on 

yield and water supply) 

iv. Apparent Recovery Efficiency by Difference for nitrogen (AREDN) (based 

on AGN and nitrogen supply) 

c- Risk score (based on prices and costs) 

Eventually, the calculated indicators are analyzed at rotational scale and tradeoff analysis 

was done to evaluate each of the systems. More details on the CropSyst model are 

illustrated in Appendix C. 

4. Results 

4.1.Model (CropSyst) performance 

Hereby, the results of the calibration and validation of the CropSyst model are represented. 

Good to excellent dry matter production (DMP) simulation. Excellent to average 

simulation when above ground Nitrogen (AGN) was modeled. Average when simulating 

soil water content (Jamieson et al., 1991). Hence, the calibrated model is satisfactory in 

terms of simulating yield, water, and Nitrogen cycle. More details on the results regarding 

the calibration and validation of the CropSyst model are illustrated in Appendix C. 
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4.2.Wheat grain yield as altered by the effects of rotation, management, and soil 

type 

In low WHC soil, regardless the type of management (fertilization and irrigation), wheat 

grain yield in wheat-potato rotation is among the highest yields, yet, similar to wheat grain 

yield in other rotations, the more the management is extensive, the less the wheat grain 

yield is. When wheat is fertilized with no irrigation, wheat grain yield in wheat-wheat 

rotation is similar to that in wheat-potato rotation, meaning that water stress in such a soil 

class (low WHC) is more evident than Nitrogen stress (Huang et al., 2003).  

The results have shown that when Nitrogen is limiting, fallow and fava bean when in 

rotation with wheat better mitigate water and Nitrogen stresses on wheat grain yield, in 

comparison with wheat-wheat rotation (López-Bellido et al., 2012). 

In high water holding capacity (WHC) soil, our results confirm that high WHC soil can 

hold more water than low WHC soil, which resulted in lower wheat grain yield drop when 

irrigation was terminated. In the same soil WHC class, wheat-fava bean rotation could 

maintain the same wheat grain yield production in semi-intensive managements as 

intensive managements, suggesting that avoiding wheat intensive management (when in 

rotation with wheat-fava bean) would not cause water nor Nitrogen stress, preserving the 

level of wheat grain yield. 

4.3.Nitrogen and water apparent recovery efficiency by difference (ARED) 

The results have shown that for each 1 kg of added N, the increase in grain yield for wheat 

in the wheat-wheat rotation is greater than that in other rotations. The lowest slope observed 

for wheat grain yield was in wheat-fava bean rotation, conforming to several studies that 

show that fava bean is an excellent preceding crop (Angus et al., 2015; Plaza-Bonilla et al., 

2017; Yau et al., 2003), reducing (partly) the dependence of the main crop (winter wheat 

for our case) on Nitrogen fertilization (Voisin et al., 2013). 

In low WHC soil, fallow land allows better use of N than potato as a previous crop as soil 

nutrients are rebalanced and soil biota is re-established (Plaza-Bonilla et al., 2017). On the 

other hand, potato becomes a better precedent than fallow land in high WHC soils. 

Contradicting with several published research, wheat in wheat-wheat rotation in low WHC 

soil valorizes less water (in terms of irrigation) than in other rotations. This could be 
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explained that there are larger periods of fallow in other rotations than that for wheat-wheat 

rotation, thus more evaporated water. While in high WHC, this amount of evaporated water 

is not as important.  

Well-fertilized wheat (F1) becomes more water reactive in a wheat-wheat rotation than 

other rotations. On the other hand, wheat in wheat-fava bean rotation becomes more 

reactive to water as Nitrogen is absent, consisting with multiple studies, which state that 

legumes are excellent precedents, especially in a poorly fertilized system. 

4.4.Rotations’ performance (productivity and efficiency) and the economic 

sustainability risk 

By looking at the Nitrogen use efficiency (NUE), it is clear that for all systems the 

efficiency decreases dramatically when Nitrogen is applied. With respect to protein 

production, regardless the management, wheat-wheat and wheat-fava bean rotations 

produce the highest amounts of protein followed by wheat-potato rotation that produces 

lower amounts depending on the management. Wheat-fallow is the least in protein 

production due to only cultivating one cycle/rotation. These results show that most 

cropping systems, which  grown in low WHC soil in such an area (semi-arid) are over-

fertilized, which is quite consistent with previous studies (Asseng et al., 2001; Ben Zekri 

et al., 2018; Garabet et al., 1998). 

It was obvious that for all cropping systems, in both soil WHC classes, wheat-potato 

rotation is the most profitable one. 

With respect to water use efficiency (WUE), intensive systems (except wheat-fallow 

rotations) are more efficient in using water than extensive systems. This means that water 

is one of the most limiting factors in shallow soils in arid zones (Sultana et al., 2009). Semi-

intensive and extensive systems are then less efficient in terms of WUE. Wheat-fallow 

systems are the least efficient in terms of water, basically due to large amounts of 

evaporated water. 

Wheat-potato rotation is the most risky rotation. In addition, wheat-fava bean rotation is 

not just more profitable than wheat-wheat rotation, it is also much less risky, economically. 

Thus, growing legumes in rotation with wheat reduces the economic risk of low relative 

production, as well as the water and Nitrogen stress, comparing to other rotations. 
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Similarly, more generally, in low WHC soil, the more intensive the systems, the more 

economically risky they are. This result shows that by intensifying the system in low WHC, 

productivity remains, efficiency decreases and the risk of economic sustainability 

increases. 

In comparison to low WHC soil, wheat-wheat and wheat-potato rotations become much 

less risky (except those systems cultivated intensively) in terms of economic sustainability. 

Wheat-fallow and wheat-fava bean, similar to low WHC soil, are the least risky, 

economically, if adopted by farmers. 

5. Discussion 

Our results, as a whole, suggest that there is no comprehensible optimal scenario, 

combining high performance (in terms of productivity and efficiency) and low risk, at the 

field scale. On a conceptual guide-map (Figure 1), the performance of the different 

cropping systems, in addition to the risk of economic sustainability of each of the system, 

are plot. 
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Figure 1 Conceptual guide-map defining the behavior of the most widespread cropping systems taking into 

account the inputs of the wheat crop, rotational outputs, wheat efficiency, and the economic sustainability 

risk. WW, WF, WP and WFB correspond to wheat-wheat, wheat-fallow, wheat-potato, and wheat-fava 

bean, respectively. The darker the represented system area, the more intensive the management is. 

Using this conceptual guide-map (Figure 1) is essential for comparing the performance of 

the different wheat-based cropping systems, but also to identify the possible levers to 

improve the performance of these systems. 

In our case, three trajectories have appeared to allow the upgrade of the system 

(productivity, efficiency and risk). Modifying the wheat management (the switch from 

intensive to extensive wheat management in wheat-potato in high WHC), changing the 

rotation type (the switch from wheat-wheat rotation to wheat-fava bean rotation) or/and the 

shift of cultivation from low to high WHC (wheat-wheat rotation from low to high WHC). 

The most productive system was clearly wheat-potato, due to the inclusion of one of the 

most demanded cash crop within. However, with low efficiency in utilizing the resources 

(Nitrogen and water) and with high sustainable economic risk. On the other hand, wheat-

fava bean rotation has appeared to be a better substitute than the promoted intensive wheat-

wheat rotation, on all aspects. Our work delivers propositional evidence that wheat-fava 

bean rotation established in extensive management may reduce farmers' subjection to 

annual variability in net returns, and could be a very appropriate and desired alternative to 

the conventional wheat-wheat rotation. It indeed reduces net profit uncertainties in the 

Mediterranean, especially in extensive management. Thus, in line with several current 

policies in the Mediterranean region (Cholez et al., 2016), such a cropping system has to 

be promoted and advertised by local policies. 

6. Conclusions and recommendations  

The results of our research showed that careful considerations should be coupled with 

recommending a specific cropping system, especially on a field scale. No optimal scenario 

was found (rotation and management) that can ensure a low risk, vast protein production, 

large net profit and high resources use efficiency (NUE and WUE), at least for the system 

simulated in this study. Our results, nevertheless, indicate that at field scale, taking into 

account the fragile economic situation of farmers within our study site, wheat-fava bean 

rotation cultivated under Nitrogen extensive agricultural managements is very 
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recommended, especially for those who cannot bear high risk systems, securing at the same 

time high efficiency in resources utilization and great protein production. In future 

research, anticipating our results, we pressurize on upgrading this study to a farm scale, 

where more criteria and parameters can come across to propose a whole integrated system 

that is profitable, non-risky and sustainable, overpowering food security deterioration and 

nevertheless, efficient in terms of resources use efficiency. 
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economic risk of low relative productivity assessment in a 
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Abstract: The promotion of optimum rotations and agricultural management of winter 

wheat-based cropping systems is very critical, as wheat is considered an essential 

component in the Mediterranean diet. Considering the delicate economic situation of 

farmers in the Mediterranean area, recommending a low risk, sustainable farming system 

is desirable. In this study, an innovative application of a multi-criteria field-level approach 

is presented, targeting food security, farmer profitability and environmental sustainability. 

The CropSyst biophysical simulation model was calibrated and implemented for the study 

site. It was chosen for its agro-environmental robustness to simulate four rotations (wheat-

wheat, wheat-fallow, wheat-potato, and wheat-fava bean). Four types of wheat agricultural 

management systems (full fertilization and full irrigation, full fertilization and zero 

irrigation, zero fertilization and full irrigation, and zero fertilization and irrigation) were 

tested in low and high soil water holding capacity (WHC) types. The effects of soil 

conditions, management practices and rotation type on wheat grain yields were assessed. 

Furthermore, the performance of each winter wheat-based cropping system was evaluated 

in terms of productivity (protein production and profitability) and the efficient use of 

resources (nitrogen and water), as well as the economic risk of low relative productivity 

each one engenders. The results show that there is no particular optimal scenario that can 

simultaneously ensure high productivity, reduce economic risk of low relative productivity, 

and achieve high wheat- water- and nitrogen-use efficiency. However, the wheat-fava bean 



Chapter 5: Crop modelling for assessing wheat-based cropping systems’ performance and economic risk 

155 

 

rotation cultivated with no wheat fertilization appeared to be a better substitute to the 

wheat- wheat rotation in terms of protein production (0.93 t/ha versus 0.8 t/ha in low WHC 

soil and 1.34 t/ha versus 1.17 t/ha in high WHC). This cropping system achieved a higher 

net profit (2111 US$/ha versus 1222US$/ha in low WHC and 3550 US$/ha versus 2450 

US$/ha in high WHC), showing high resource-use efficiency and was less risky for farmers. 

Moreover, a very high profit could only be attained with the wheat-potato rotation (8640 

US$/ha and 12,170 US$/ha in low and high WHC, respectively), yet with low input-

efficiency and high economic risk of low relative productivity. 

Keywords: Winter wheat, CropSyst, Risk, Efficiency, Management, Cropping system, 

Lebanon. 

1. Introduction 

Throughout history, the Mediterranean, especially its eastern and southern parts, has been 

known to be the origin of many landraces and a pioneer in food production. It has never 

been a region of abundance and glut, yet has always overcome the deficiencies in 

production (Braudel, 1990; Kehoe, 1988). Winter wheat (Triticum Durum L.) is one of the 

major crops grown in the Mediterranean. In Lebanon and the Middle East and North Africa 

(MENA) region, wheat is often financially and sometimes technically supported as a part 

of the governmental subsidy system. This self-sufficiency policy has long been the bedrock 

of food security, leading to the continuous cultivation and successive sowing of wheat (El 

Khansa, 2017; Nasrallah et al., 2018). At the same time, the MENA region is the largest 

cereal importer in the world, with over 58 million metric tons, covering more than 50% of 

its consumption (Wright and Cafiero, 2010). For nations within the MENA region, 

importing cereal grains (mainly wheat) is not a matter of choice, but a necessity (Ahmed 

et al., 2014). 

Even if policies and policy-makers are keen to encourage large cereal production, wheat in 

particular, simple wheat-based cropping systems co-exist in the Mediterranean region 

(MoA, 2010). Intensive local wheat production in monoculture (wheat-wheat rotations) has 

always been coupled with drawbacks and nutrient mining and deficiency. According to 

Sieling et al. (2005), wheat-following-wheat rotations indeed lead to reduced yields, 

compared to wheat following a different crop. The main reasons behind this finding are (1) 
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the increase in biotic yield-limiting factors (Bennett et al., 2012) and (2) a lesser availability 

of needed nutrients and particularly nitrogen (Dalal et al., 2001; Sieling et al., 2005). 

Thereby, the different already existing wheat-based cropping systems, with different 

rotation and management practices, are directly linked to soil water and nitrogen access 

(Pala et al., 2007; Ryan et al., 2007), production type (e.g. cereal grains, legume grains or 

vegetables), in addition to economic risk, which farmers can overcome (Komarek et al., 

2015; Sadras, 2002). 

Thus, several studies have tried to address the obvious question of the performance and 

outputs of each production system. Diverse crop rotations have been experimented, and 

sometimes versus monoculture systems (Beaudoin et al., 2005; Constantin et al., 2010; 

Hansen et al., 2015, 2010; Macdonald et al., 2005; Moreau et al., 2012; Sieling and Kage, 

2006). For instance, long-term field experiments in Central and Western Europe have 

shown that the inclusion of a catch crop within a rotation can indeed significantly increase 

nitrogen-use efficiency (NUE) as well as the nitrogen (N) uptake of the main crop (Berntsen 

et al., 2006; Constantin et al., 2011). In comparing different types of wheat-based rotations, 

Angus et al. (2015) found that both fallow-wheat and break crop-wheat rotations generally 

produced greater yields than wheat-wheat rotations. For instance, legume-wheat rotations 

generated over 20% wheat grain yields compared to wheat-wheat rotations. Without 

underestimating the role of plant genetics, the efficient management of water and N has 

been identified as a crucial need for closing the yield gap of main cereal crops (Sinclair and 

Rufty, 2012) notably on arid and semi-arid soils with low organic carbon and nitrogen 

content (Darwish et al., 2018). Yield gap is estimated by comparing the ob- served yield 

with the attainable one (Mueller et al., 2012). Downscaling to field and farm levels made 

it possible to study and analyse the economic risk that farmers and producers could face, 

in relation to their adopted cropping systems (Di Falco and Perrings, 2005; Komarek et al., 

2015; Mahmood et al., 2017; Valle et al., 2004). However, the absence of a clear integrated 

approach at field level, assessing different existing wheat-based cropping systems 

regarding their productivity, resource- use efficiency and economic risk of low productivity, 

represent the motivation of this study. It raises the key issue of the wheat-based cropping 

systems to be promoted, regarding resources, soil types, climatic variability, and 

management systems. It also offers a conceptual guide-map, allowing policy-makers and 



Chapter 5: Crop modelling for assessing wheat-based cropping systems’ performance and economic risk 

157 

 

producers to categorize different cropping systems with reference to productivity (i.e. net 

profit and protein production), efficiency (i.e. water and nitrogen) and the economic risk of 

low relative productivity. 

For this purpose, the biophysical simulation model "CropSyst" version 3 (Monzon et al., 

2012) was calibrated and evaluated in the mid-Bekaa plain in Lebanon based on extensive 

field work. Scenarios concerning different existing wheat-based cropping systems (i.e. 

rotation type and wheat management system) in two soil types with contrasting water 

holding capacities were developed and run against historical long-period climatic data (i.e. 

20 years). Based on the model outputs, the objectives of the paper were first, to measure 

and compare the effect of the different rotations (i.e. wheat-wheat, wheat-potato, wheat-

fallow and wheat-fava beans) and agricultural practices (i.e. water and nitrogen) on winter 

wheat grain yield. Second, to evaluate and compare the performance of each cropping 

system, with different rotation types and agricultural practices, and in terms of productivity 

and efficiency of utilizing available resources. Finally, to establish the link between the 

performance of each cropping system and its economic risk of low relative productivity. 

2. Methods 

2.1.Study site and crop management 

The Bekaa plain in Lebanon is located between 33°33’ N and 33°60’ N latitude, 35°39’ E 

and 36°14’ E longitude (Fig. 1). The area of the plain is around 860.25 km² with an average 

elevation of 1000 m above sea level. The dominant soils within the plain are mainly clay 

to loam but differ in their water holding capacity (WHC). The Bekaa is characterized by a 

semi-arid Mediterranean climate and the average annual precipitation is around 600 mm. 

In addition, agriculture is the main economic activity as field crops, orchards, annual and 

perennial plants are cultivated.  
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Figure 1. Location of the Bekaa plain in Lebanon as well as the study area within the red tile 

Field crop areas (e.g. cereals, vegetables, alfalfa and legumes) range from 0.1 ha to 20 ha. 

Approximately 65 % of the national cereal production is produced in the Bekaa plain, while 

winter wheat areas in the plain correspond to 44 % of the national wheat area, occupying 

areas ranging from 9000 to 12,000 ha annually. Nearly 50% of potato crops, which is one 

of the largest tuberous crops cultivated in Lebanon, is cultivated in the Bekaa plain as one 

of the most important cash crops. As for legumes, Bekaa is responsible for 20 % of the 

national cultivation area, 16 % of this area corresponds to fava beans, which occupy around 

1548 ha in the plain (MoA, 2010). Wheat and fava beans are winter crops, as they are sown 

in November, while potatoes are sown in March.  
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Regarding irrigation management, 72 % of Bekaa crops are fully or supplementary 

irrigated. Even though fava beans and wheat are grown during the winter season, they 

receive supplementary irrigation during early spring to ensure better yields. More precisely, 

wheat plantations, 20 % of the areas existent in the Bekaa plain is not supplementary 

irrigated, due to no access to water, money shortage and/or in the hope of a good rainy 

season (El Khansa, 2017). While potatoes, on the other hand, are fully irrigated, on a 

weekly basis, from sowing to harvesting, ranging from 10 to 20 mm per application, 

depending on the phenological stage (Darwish et al., 2003, 2006a).  

Fertilization is supplied, especially nitrogen, being one of the most growth driving nutrient. 

Fertilization management practices differ among farmers, however, nitrogen is supplied in 

both organic and in- organic forms. In the case of wheat, farmers supply nitrogen in 

amounts not exceeding 230 kg ha−1 as ammonium sulfate at emergence and before the 

flowering stages. However, up to 15 % of wheat farmers do not apply synthetic fertilization. 

This is mainly due to the cultivation of potato as a previous crop, where the land is supposed 

to be fertile enough to meet wheat nitrogen demands, besides other economic 

considerations and money saving purposes, when necessary. As for potato crops, nitrogen 

is applied before planting in the form of manure, at around 250 kg N ha−1, in addition to a 

second application of nitrogen, at around 100 kg N ha−1, before the inception of flowering. 

When fertilized, fava beans receive a triggering amount of 50 kg N ha−1 of nitrogen sixty 

days after sowing  

In the Bekaa plain, one of the most followed rotation types is the wheat-potato rotation as 

it is one of the most profitable rotations. In fact, the existence of wheat-legume rotations is 

limited within the Bekaa plain. However, some farmers do cultivate wheat in monoculture 

to benefit from governmental support in buying their harvest with relatively acceptable 

prices. 23% of wheat cultivated land in 2016 had also been wheat cultivated in 2017  

(Nasrallah et al., 2018). Therefore, among suitable agriculture land, less than 1500 ha of 

land are left as fallow annually, corresponding to 4% of the total exploited area. 
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2.2.Simulation model 

2.2.1. CropSyst model description 

The CropSyst model, which was first presented by Stockle et al. (2003, 1994), uses 

weather, soil and crop input data for the estimation of crop productivity under different 

management conditions (i.e. water and nutrient input). It has been widely applied to many 

regions (e.g. USA, China, Central and Northern Europe and the Mediterranean) and crops 

(e.g. cereals, vegetables and legumes) (Ahmad et al., 2017; Belhouchette et al., 2008; 

Brooks et al., 2017; Palosuo et al., 2011; Rötter et al., 2012), especially for its ability to 

work on a daily basis for simulating multi-crop scenarios, water-soil dynamics (Richard’s 

equation for our case) and nitrogen budgets. 

2.2.2. Datasets for model calibration and evaluation 

2.2.2.1. Experimental datasets for winter wheat model calibration and 

evaluation 

Five winter wheat plots were selected within the region of mid-Bekaa, corresponding to 

two dominant soil types with different water holding capacities (low: 100-175 mm/m and 

high: 175-250 mm/m). Above ground biomass (AGB), dry matter production (DMP), soil 

water content (SWC), and above ground nitrogen (AGN) were measured at four 

physiological stages and replicated three times within each winter wheat plot (Table 1). 

Table 1. Winter wheat reference plot characteristics. 

Plot ID Sowing date 

 

Harvesting 

date  

Sowing 

density 

(Seeds m-

1) 

N applied 

(kg ha-1) 

Irrigation 

applied 

(mm) 

Soil WHC 

 

1  23/11/2018 02/07/2018 480 230 100 low 

2  20/11/2018 05/07/2018 480 170 240 high 

3  20/11/2018 01/07/2018 480 170 160 low 

4  15/11/2018 01/07/2018 430 280 90 high 

5  23/11/2018 28/07/2018 465 180 0 high 
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Above ground biomass (AGB) was measured by a destructive method. After weighing the 

fresh samples for each replication within each plot, the samples were cut up, mixed and 

quartered and a representative sample was oven dried at 70 °C until constant weight was 

reached (Catchpole and Wheeler, 1992).  

Soil water content (SWC) was measured using the gravimetric method. For each of the 

three pedological horizons (the depth of each soil horizon varied among plots), a sample 

of soil was taken out, weight measured fresh, then sent to the oven to dry at 105 °C until 

constant weight was obtained. For each winter wheat reference plot, the measurement was 

replicated three times randomly at each depth at five crop development stages (Reynolds, 

1970).  

Above ground nitrogen (AGN) was measured following the Kjeldahl N method (Rodriguez 

and Miller, 2000). Crop N uptake for each treatment was calculated based on the 

corresponding data of dry matter production and N content for each treatment, at each 

sampling date. Winter wheat in-situ measurements are summarized in table 2. It shows the 

minimum, maximum and average results of the measurements of replications. SWC 

measurements in the different horizons were also considered. 

Table 2. Mean and standard deviation results of the in-situ measurements of wheat plots. The 

measurements correspond to above ground biomass (AGB), above ground nitrogen (AGN), and soil water 

content (SWC). The measurements took place at 5 physiological stages (1: sowing, 2: tillering, 3: booting, 

4: flowering and 5:  physiological maturity). 

Plot 

ID 

Physiological 

Stage 

AGB (kg ha-

1) 

AGN (kgN ha-1) SWC (m³ 

m-³) 

  Mean SD Mean SD SD Mean 

1 1     0.05 0.39 

1 2 390 138 28.2 2.8 0.02 0.39 

1 3 2527 126   0.02 0.4 

1 4 6410 537 196.7 8.2 0.08 0.38 

1 5 9975 722   0.05 0.32 

2 1     0.03 0.26 

2 2 513 30.5 26.2 1.6 0.05 0.36 
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2 3 2513 533   0.02 0.35 

2 4 6290 377 287 17 0.02 0.34 

2 5 10852 577   0.03 0.33 

3 1     0.07 0.26 

3 2 600 56 28.8 2.7 0.05 0.35 

3 3 2817 241   0.03 0.34 

3 4 5987 163 250.2 6.8 0.03 0.36 

3 5 11338 463   0.02 0.36 

4 1     0.03 0.26 

4 2 529 58 21.1 2.3 0.03 0.29 

4 3 2330 261   0.02 0.34 

4 4 5557 681 222.3 27.2 0.02 0.29 

4 5 8050 349   0.03 0.26 

5 1     0.03 0.41 

5 2 660 65 23.8 2.3 0.02 0.4 

5 3 2980 356   0.02 0.38 

5 4 5343 218 224.1 9.1 0.03 0.3 

5 5 8962 730   0.03 0.28 

 

2.2.3. Survey datasets for potato and fava bean model calibration and 

evaluation 

A survey was conducted in the study site inquiring about potato and fava bean crops, 

including four farmers of each crop type, collecting information on sowing and harvesting 

dates, management practices and yields. Table 3 includes the characteristics of potato and 

fava bean plots, to which data on sowing and harvesting dates, management practices and 

yields correspond. 

Table 3. Potato and fava bean plot characteristics. The yield is expressed in dry matter (at a standard level 

of moisture). 

Crop and ID Sowing date 

 

Harvesting date 

 

N applied 

(kg ha-1) 

Irrigation 

applied (mm) 

Yield 

(kg ha-1) 
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Potato 1  05/03/2018 10/07/2018 100 560 50000 

Potato 2 05/03/2018 15/07/2018 193 600 37000 

Potato 3 01/03/2018 21/06/2018 370 700 40000 

Potato 4 10/03/2018 17/07/2018 370 500 40000 

Fava bean 1  10/11/2017 05/05/2018 50 50 1201 

Fava bean 2 08/11/2017 15/05/2018 50  0 945 

Fava bean 3 12/11/2017 11/05/2018 0 0 1125 

Fava bean 4 18/11/2017 12/05/2018 0 0 1342 

 

Weather data, including daily data on precipitation, maximum air temperature, minimum 

air temperature and incoming solar radiation from 1997 to 2017, were collected from a 

station located in the study area (i.e. Zahle). 

2.2.4. Model calibration and evaluation process 

Following Belhouchette et al. (2008), only the two most sensitive parameters were 

calibrated for simulation with CropSyst, namely the above ground biomass transpiration 

coefficient (AGBT) and the conversion of light to above ground biomass coefficient 

(AGBIPAR). These parameters were derived manually by changing the crop parameters until 

a satisfactory agreement between the predicted and simulated yield and biomass was 

achieved (Singh et al., 2008). While for potato and fava bean crops, the calibration was 

based on yields reported through the questionnaire conducted, as suggested by Komarek et 

al. (2017).  

CropSyst was validated by comparing the simulated and measured values of the observed 

plots used for validation (section 2.2.2, Tables 1-3), which were not part of the calibration 

process, meaning that one plot of each crop was used for calibration, while the others were 

used for validation. In the case of wheat, these values correspond to AGB, AGN, and SWC 

over the whole growing cycle, while for potato and fava bean crops, according to Komarek 

et al. (2017), only the yield was validated after calibration. Root Mean Square Error 

(RMSE) was used to calculate the error of estimates as:  

𝑅𝑀𝑆𝐸 = [𝑁𝑝−1 ∑ (𝑃𝑖 − 𝑂𝑖)
2𝑁

𝑖=1 ]0.5                                   Eq. 1 
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where Np is the number of pairs of observed (Oi) and simulated (Pi) data. 

Then, the RMSE was computed relative to the mean of the observed values (Ō) as follows: 

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

Ō
                                                   Eq. 2 

To have proper insight on the model efficiency, the model efficiency “EF” indicator was 

calculated as follows: 

𝐸𝐹 = 1 −  
∑ (𝑃𝑖−𝑂𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖−�̅�)2𝑁
𝑖=1

                                               Eq. 3 

The model efficiency indicator varies from -∞ to +1. Negative values can indicate bias in 

linear models, yet could not be the case in non-linear models. 

As an indicator to estimate correlation/regression, index of agreement “d” was calculated 

as follows: 

𝑑 = 1 −  
∑ (𝑃𝑖−𝑂𝑖)2𝑁

𝑖=1

∑ (|𝑃𝑖−�̅�|+|𝑂𝑖−�̅�|)2𝑁
𝑖=1

                                          Eq. 4 

where Oi represents the observed data, Pi represents the predicted data and Ō is the average 

of the observed data. The Willmott index of agreement (d) varies from 0.0 (poor model) to 

1.0 (perfect model), similar to the interpretation of the coefficient of determination (R2). 

Eqs. 1, 2, 3 and 4 were applied to the validation plots within the region, including four 

winter wheat plots, three potato plots, and three fava bean plots, to make sure that by 

changing the management practices and initial conditions, the model kept on generating 

satisfactory estimates. 

2.3.Developing the scenarios to be simulated by the CropSyst model 

In this study, different wheat-based cropping systems of different rotation types (i.e. wheat-

wheat, wheat-fallow, wheat-potato, and wheat-fava bean, see Table 3) in two soil water 

holding capacity (WHC) types, are simulated. The two soil types consist of different 

horizons of different depth. Table 4 illustrates the soil characteristics of each soil type. Each 

soil type is not uniform in terms of depth, rather consists of separate soil horizons. 
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Table 4 Soil characteristics in where the pilot fields were selected in the mid Bekaa plain of Lebanon 

 

Low Depth 

(m) 

Soil Class Sand % Clay % OM% BD    (g 

cm-3) 

WP 

(%Vol) 

FC 

(%Vol) 

Horizon 1 0.1 Cambisols 30 56 2.3 1.29 33.2 44.6 

Horizon 2 0.25 Cambisols 25 55 2.2 1.28 32.6 44.1 

Horizon 3 0.3 Cambisols 18 56 1.8 1.35 32.8 44.2 

Horizon 4 0.4 Cambisols 25 48 1.9 1.33 33 44.4 

High         

Horizon 1 0.1 Cambisols 29 55 2.6 1.3 32.6 44.1 

Horizon 2 0.35 Cambisols 25 55 2.8 1.32 32.5 44 

Horizon 3 0.55 Cambisols 16 50 2.2 1.28 29.6 42.2 

Horizon 4 0.4 Cambisols 25 45 2 1.34 27.1 40.1 

 

We note hereby that full fertilization (i.e. nitrogen) and full irrigation (i.e. water) follow 

the amounts applied on the plot used for calibration (Plot ID 1 in Table 1), using the fixed 

fertilization and fixed irrigation at fixed dates in CropSyst model. Four types of wheat 

management systems were considered: 

F1-I1: Full fertilization (230 kgN ha-1) and full irrigation (100 mm); 

F1-I0: Full fertilization (230 kgN ha-1) and no irrigation; 

F0-I1: No fertilization and full irrigation (100 mm); 

F0-I0: No fertilization and no irrigation. 

Thus, it is noted that during the simulations, these different management practices are only 

applied in the case of wheat, while the management of potato and fava bean crops does not 

change, where the management of Potato 1 and Fava bean 1 in Table 3 are used for 

simulation. As shown by El Khansa (2017), potato farmers do not alter their water and 

fertilizer inputs as they know in advance the high risk this involves. In the case of fava 

beans, the management is fixed, as a small amount of nitrogen is the only input they apply, 

if any. 
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Each cropping system scenario is run from 1997 to 2017. The output of each 

scenario/cropping system is 20 simulated years composed of 10 rotations, each lasts two 

years. Table 5 summarizes the scenarios simulated. We note that the irrigation was 

simulated in CropSyst using a fixed amount of water in a fixed time, as expressed by the 

farmers during our survey. 

Table 5. Cropping system scenarios simulated using CropSyst. Each cropping system scenario consists of a 

rotation type and wheat management system. 16 cropping systems were simulated in two soil water holding 

capacity types, leading to 32 scenarios. 

Low Soil holding capacity (LSC)  High soil holding capacity (HSC) 

Scenario Rotation Management Scenario Rotation Management 

1 Wheat-Wheat F1-I1 17 Wheat-Wheat F1-I1 

2 Wheat-Wheat F1-I0 18 Wheat-Wheat F1-I0 

3 Wheat-Wheat F0-I1 19 Wheat-Wheat F0-I1 

4 Wheat-Wheat F0-I0 20 Wheat-Wheat F0-I0 

5 Wheat-Fallow F1-I1 21 Wheat-Fallow F1-I1 

6 Wheat-Fallow F1-I0 22 Wheat-Fallow F1-I0 

7 Wheat-Fallow F0-I1 23 Wheat-Fallow F0-I1 

8 Wheat-Fallow F0-I0 24 Wheat-Fallow F0-I0 

9 Wheat-Potato F1-I1 25 Wheat-Potato F1-I1 

10 Wheat-Potato F1-I0 26 Wheat-Potato F1-I0 

11 Wheat-Potato F0-I1 27 Wheat-Potato F0-I1 

12 Wheat-Potato F0-I0 28 Wheat-Potato F0-I0 

13 Wheat-Fava bean F1-I1 29 Wheat-Fava bean F1-I1 

14 Wheat-Fava bean F1-I0 30 Wheat-Fava bean F1-I0 

15 Wheat-Fava bean F0-I1 31 Wheat-Fava bean F0-I1 

16 Wheat-Fava bean F0-I0 32 Wheat-Fava bean F0-I0 

 

2.4.Calculation of the productivity and efficiency indicators for assessing the 

performance of wheat-based cropping systems 

2.4.1. Calculation of the productivity indicators 

- The net profit (US$ ha-1) indicator: computed at rotational level (2 years) as follows: 
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𝑁𝑃𝑟 = 𝑅𝑒𝑣𝑟 − 𝐶𝑜𝑠𝑡𝑟                                              Eq. 5 

where NP stands for net profit at rotational level (r), Rev stands for revenue per rotation (r) 

and Cost stands for the variable production cost of each rotation (r). We note hereby that 

the variable production cost (Cost) represents all the costs needed to establish a particular 

rotation. As the total simulation period is 20 years, the net profit is calculated 10 times for 

each cropping system. 

In order to calculate the Revr and the Costr (Eq. (5)) of each of the cropping systems, data 

on input costs and output prices were collected through a local survey conducted at the 

study site (Table 6), since in Lebanon, there is a lack of national official statistical sources 

for annual input and output costs and prices. The input costs collected correspond to costs 

related to cultivation (i.e. wheat, potato or fava bean), while output prices refer to selling 

the produce (i.e. wheat grain yield, straw yield, potatoes, and fava bean grains). The input 

costs and output prices collected through our survey correspond to an average of 5 years 

as the prices are more or less stable and do not witness dramatic fluctuations. This also 

appears when comparing to FAOSTAT (http://www.fao.org/faostat/) data. Regarding the 

respondents, wheat-related costs were collected from 10 wheat farmers, potato-related 

costs from 10 potato farmers and fava bean-related costs from 6 fava bean farmers. The 

farmers were selected randomly, yet we intended to interview those who have been 

exercising the cultivation for a relatively long period (minimum 10 years). In addition, we 

aimed interviewing farmers who own their lands. The responses collected from these 

farmers (Table 6) were homogeneous by looking at the averages and the standard 

deviations. 

It is noted that the input costs for both potato and fava bean crops are the variable 

production costs including costs of fertilizer, water seeds, and labour. As simulating 

different management systems is only carried out in the case of wheat, the variable 

production cost, which is the only cost considered to establish potato or fava bean 

cultivation, is equal to the input cost (Table 6) and does not change with the different 

scenarios. 

http://www.fao.org/faostat/
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Table 6. Crop input costs and output prices 

Input 

Wheat 

Cost (US$ ha-

1) 

Output Price 

(US$ 

Ton-1) 

Crop 

 

Input cost 

(US$ ha-1) 

Output 

price (US$ 

Ton-1) 

Fertilizers 400 (SD=47) Grain 

yield 

360 Potato 9150 (SD= 

1556) 

330 

(SD=43) 

Water 450 (SD= 48) Straw 50 

(SD=8) 

Fava 

bean 

745 (SD= 78) 1000 

(SD=114) 

Labor+ 

Pesticides 

450 (SD= 70)      

Seeds 200 (SD= 31)      

 

The average protein production (kg ha−1) indicator is computed at rotational level 

following two equations (Eqs. (6) & (7)) for each cropping system. The purpose is to 

compare rotations of different crops, to eventually draw conclusions on the protein 

production of each rotation. 

First, the protein production (kg ha-1) for each rotation is computed by considering the final 

yield of each crop within the rotation and its corresponding protein percentage:  

𝑃𝑟 = [𝑌𝑖𝑒𝑙𝑑𝐶𝑟𝑜𝑝1 × %𝑃𝐶𝑟𝑜𝑝1] + [𝑌𝑖𝑒𝑙𝑑𝐶𝑟𝑜𝑝2 × %𝑃𝐶𝑟𝑜𝑝2]                  Eq. 6 

where Pr is the amount of protein (kg ha-1) produced by each rotation (r) (2years), YieldCrop1 

is the yield (kg ha-1) of the first crop within the rotation, YieldCrop2 is the yield (kg ha-1) of 

the second crop within the rotation, %PCrop1 is the percentage of protein contained in 1 kg 

of the yield of crop1 and %PCrop2 is the percentage of protein contained in 1 kg of the yield 

of crop2. Equation (6) is applied 10 times for each cropping system. 

YieldCrop1 and YieldCrop2 are obtained from the CropSyst outputs. As for %PCrop1 and 

%PCrop2, according to the USDA reports (USDA, 2018), 1 kg of grain contains 124.2 g of 

protein, 1 kg of potato tuber, contains 25.7 g of protein and 1 kg of fava bean, contains 

261.2 g of protein.  
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Then, the accumulated protein amounts of the 10 rotations (Nr) within each cropping 

system are added up. Eventually, the average is measured by dividing the product by the 

total number of rotations within each cropping system: 

�̅�𝑟 =
∑ (𝑃𝑟)𝑁𝑟

𝑟=1

𝑁𝑟
                                                  Eq. 7 

where �̅�𝑟  is the average protein production (kg ha-1) at rotational level. r is the rotation. Nr 

is the total number of rotations (=10 in this study). 

2.4.2. Calculation of the efficiency indicators 

The nitrogen-use efficiency (NUE) (Darwish et al., 2006a; Gaudin et al., 2015; 

Rahimizadeh et al., 2010) and water-use efficiency (WUE) (Kang et al., 2002; Sadras, 

2004) for the average 10-year wheat crop presented in each of the cropping systems 

(rotation type and wheat management) are computed following two equations (Eqs. 8 & 

9), as follows:  

𝑁𝑈𝐸𝑊ℎ𝑒𝑎𝑡 =  
𝐴𝐺𝑁1

(𝑁𝑆𝑢𝑝𝑝𝑙𝑦1+𝑇𝑆𝑀)
                                       Eq. 8 

𝑊𝑈𝐸𝑊ℎ𝑒𝑎𝑡 =  
𝐺𝑌

𝐸𝑇𝐴𝑐𝑡𝑢𝑎𝑙
                                            Eq. 9  

where NUEWheat is the nitrogen-use efficiency calculated for the 10-years, out of a total of 

20 years, of the wheat crop. AGN1 (kgN ha-1) stands for above ground nitrogen when wheat 

is fertilized. NSupply1 corresponds to the amount of supplied N fertilizer (kgN ha-1), when 

applied. TSM corresponds to total soil mineralization rate accounting for N soil pool (kgN 

ha-1). WUEWheat is the water-use efficiency calculated for the 10years, out of a total of 20 

years, of wheat cultivation. GY corresponds to grain yield. ETActual stands for 

evapotranspiration (mm). 

Then, the apparent recovery efficiency by difference (ARED) is compared following 

equations (10) & (11), to capture the added value of supplied N fertilizers and irrigation to 

wheat within the different cropping systems, as follows: 

𝐴𝑅𝐸𝐷𝑁 =  
𝐴𝐺𝑁1−𝐴𝐺𝑁0

𝑁𝑆𝑢𝑝𝑝𝑙𝑦1−𝑁𝑆𝑢𝑝𝑝𝑙𝑦0
                                     Eq. 10 
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𝐴𝑅𝐸𝐷𝑊 =  
𝐺𝑌1−𝐺𝑌0

𝑊𝑆𝑢𝑝𝑝𝑙𝑦1−𝑊𝑆𝑢𝑝𝑝𝑙𝑦0
                                    Eq. 11 

where AREDN and AREDW correspond to apparent recovery efficiency by difference, for 

nitrogen and water respectively. NSupply0 corresponds to the amount of supplied N fertilizer 

(kgN ha-1), when not supplied, which is equal to zero. AGN0 (kgN ha-1) corresponds to the 

above ground N when wheat is never fertilized. GY1 (kg ha-1) and GY0 (kg ha-1) stand for 

grain yield under full irrigation and no irrigation at all, respectively. WSupply1 stands for the 

amount of water supplied as irrigation (mm). WSupply0 is the amount of water supplied as 

irrigation (mm), when not supplied, which is equal to zero.  

2.5.Calculation of the “economic risk of low relative productivity” 

Taking into account that in the MENA region and many developing countries, access to 

banks’ credits or other credit institutions has hardly been established or has fallen in 

disorder (Asseldonk et al., 2013), the risk calculation considered in this study is in line with 

the farmers’ concerns of being financially secured to keep on sustaining their crop- ping 

system with no or low financial failure by mobilizing their net profit to invest in the rotation 

that follows by covering its variable production cost. The financial failure considered here 

is not being able to re-establish their rotations for preserving their livelihoods. In practice, 

this is seen when the net profit of a particular rotation in year 1 is less than the variable cost 

of the same rotation in year 2, meaning that the farmer who  wishes to  re-cultivate this 

particular system, must mobilize external resources to increase the difference between the 

net profit and the variable production cost. The risk calculation proposed is an original 

procedure different from the standard calculations within the literature. The variation in the 

risk in this study is basically related to yield variations as prices in the area are seen more 

or less stable over the last years. In addition, it is important to mention that the risk 

considered in this study is to compare different cropping systems/scenarios. In other words, 

when the financial failure is seen, it does not mean that the farmer’s livelihood is 

terminated, yet they witness a risk of not being able independently in re-cultivating the 

same system for the next rotation or two coming years, by covering its total production 

costs. 

Concretely, the economic risk of low relative productivity, which is expressed as a score, 

is calculated as follows: 
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𝑅𝑖𝑠𝑘𝐶𝑆 = (∑ 𝑊𝑟 × (+𝑅𝐷𝑟)) × 𝐹𝑟/𝑁𝑟
𝑁𝑟
𝑟=1                              Eq. 12 

where Riskcs is the economic risk score that will be assigned to each of the cropping 

systems, taking into account the 10 rotations within. r corresponds to the rotation. Nr 

corresponds to the total number of rotations (Nr=10).  

Wr is the normalized weight of the variable production cost at rotational level. As the tested 

rotations have different production costs (i.e. different crops and management systems), a 

normalized weight of the variable production cost is computed for each rotation, as a ratio 

of the production costs of different rotations to the production cost of the most expensive 

rotation (i.e. wheat-potato). Weight is calculated as follows: 

𝑊𝑟 =  
𝐶𝑜𝑠𝑡𝑟

𝐶𝑜𝑠𝑡𝑊𝑃
                                                    Eq. 13 

where Wr is the weight of each rotation varying between 0 and 1, Costr is the full production 

cost of a rotation, CostWP corresponds to the full production cost of the wheat-potato 

rotation type.  

RDr is the relative deviation of the net profit from the cost at each rotation. Given that the 

farmer will continue applying the same rotation type and wheat management system, the 

relative deviation of this net profit/rotation from the total cost needed to re-establish the 

same rotation of the same rotation type and wheat management system, is computed as 

follows: 

𝑅𝐷𝑟 =
𝐶𝑜𝑠𝑡𝑟−𝑁𝑃𝑟

𝐶𝑜𝑠𝑡𝑟
                                                Eq. 14 

where RDr is the relative deviation of the net profit from the cost for each rotation within 

each cropping system, Costr is the variable production cost of a particular rotation (e.g. 

wheat-wheat in F1-I1 management system) and NPr is the net profit of this particular 

rotation within a particular cropping system. It is noted that within the whole period (i.e. 

20 years of simulation) in a particular cropping system (i.e. 10 rotations), the Costr is fixed 

and doesn’t change, while the NPr changes for every rotation of 2 years. If the output of 

RDr is negative, meaning that the NPr is higher than the Costr, then the corresponding 

rotation is neglected and is not considered when applying Eq. 12  
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Fr/Nr is the frequency of rotations (ratio from 0 to 1) whose net profit is lower than the 

variable production cost, out of the 10 rotations (Nr). To highlight the repetition of rotations 

with a deficit (positive RDr), i.e. in which the net profit is lower than the cost, the ratio of 

the occurrence of this “bad” event from the whole number of rotations (Nr=10) is computed 

as follows: 

𝐹𝑟/𝑁𝑟 =
#𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝐷𝑟

𝑁𝑟
                                           Eq. 15 

where #PositiveRDr is the number of rotations within a cropping system whose RDr is 

positive (NPr < Costr). Eq. (15) is applied for each of the 16 cropping systems, in both low 

and high WHC soils. 

3. Results 

3.1.Calibration and validation of the CropSyst model 

The results of the validation of the CropSyst model are therefore generated after the 

calibration. Following the rating proposed by Jamieson et al. (1991), the RRMSE ranged 

between 9.2% and 12.7%, it can thus be considered as good to excellent simulation of dry 

matter production (DMP). For above ground nitrogen (AGN) simulation, RRMSE ranged 

from 7.7% to 25.0% and can be considered as average to good. In the case of the average 

soil water content (SWC) simulation, RRMSE ranged from 21.0% to 34.3%. As regarding 

the efficiency indicator (EF), for the DMP, the values ranged between 0.946 and 0.99, 

between 0.9 and 0.99 for AGN and between -5.5 and -0.57 for SWC. Concerning the index 

of agreement (the correlation/regression indicator), the values ranged between 0.990 and 

0.996 for the DMP, between 0.96 and 0.997. As for the SWC, the index of agreement 

produced values between 0.53 and 0.64. Hence, the calibrated model can be counted as 

satisfactory in terms of simulating yield, water, and nitrogen cycles. 

3.2.Wheat grain yield as altered by the effects of rotation, management system, 

and soil type 

The effects of different management systems, soil WHC, and rotations on wheat grain 

yields (kg ha−1) are compared for the different wheat-based systems, as shown in Table 7. 

Before applying the mean separation test, we checked for homogeneity using Chi-square 

test and normality using Shapiro Wilk’s W test assumptions For all our cases, the null 

hypothesis was rejected by the Chi-square test confirming that the rotation types are linked 



Chapter 5: Crop modelling for assessing wheat-based cropping systems’ performance and economic risk 

173 

 

to the wheat grain yield with significant results and non-significant for the Shapiro-Wilk’s 

W test, thus the normality assumption was checked. Tuckey test, which is a 2-way ANOVA 

analysis, was used to its ability in reducing type 1 and 3 errors (Acutis et al., 2012) 

Table 7. Wheat grain yields in different soil water holding capacities (WHC), rotations and management 

systems in dry Mediterranean conditions. The statistically different groups are represented by different 

letters (a, b and c) characterizing yields with significant difference  (Tukey test at <alpha>=0.05). 

 Wheat grain yield (kg ha-1)  

Management Type of rotation ANOVA 

 

Wheat-

Wheat 

Wheat-

Fallow 

Wheat-

Potato 

Wheat-Fava 

bean 

Significant 

difference 

(Rotation) 

Soil with low 

WHC      

F1-I1 4513 4374 4515 4404 a,b,a,ab 

F1-I0 3787 3517 3757 3601 a,b,a,b 

F0-I1 3447 3705 3962 3873 a,ab,b,b 

F0-I0 3124 3141 3433 3280 a,a,b,ab 

Significant 

difference 

(Management) a,b,bc,c a,b,b,b a,b,ab,b a,bc,ab,c   

Soil with high 

WHC      

F1-I1 6083 6246 6216 6117 a,a,a,a 

F1-I0 5250 5638 5549 5525 a,a,a,a 

F0-I1 5126 5818 5763 5736 a,b,b,b 

F0-I0 4665 5421 5290 5200 a,b,b,b 

Significant 

difference 

(Management) a,b,b,b a,ab,ab,b a,ab,ab,b a,ab,ab,b   

 

In low WHC soil, wheat grain yields produced by a wheat-potato rotation were the highest, 

with no clear effect of the rotation type. However, in all rotations, wheat grain yields 
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significantly decrease as the input amounts (i.e. fertilization and irrigation) decrease or are 

not applied (e.g. in the case of a wheat-potato rotation it drops from 4515 kg ha-1 in F1-I1 

to 3433 kg ha-1 in F0-I0. 

When wheat is fertilized with no irrigation (F1-I0), wheat grain yields in a wheat-wheat 

rotation (3787 kg ha−1) are similar to those observed in a wheat-potato rotation (3757 kg 

ha−1), meaning that water stress in such a soil type (i.e. low WHC) is more significant than 

nitrogen stress.. This finding agrees with the results reported earlier (Huang et al., 2003). 

When wheat is not fertilized, irrigated or not, wheat grain yields in wheat-fallow and 

wheat-fava bean rotations are higher than those observed in a wheat-wheat rotation (i.e. 

3873 kg ha−1 in a wheat-fava bean rotation versus 3447 kg ha−1 in a wheat- wheat rotation) 

and similar to those observed in a wheat-potato rotation (i.e. 3280 kg ha−1 in a wheat-fava 

bean rotation versus 3433 kg ha−1 in a wheat-potato rotation). This means, indeed, that 

fallow and fava bean when in rotation with wheat better mitigate water and nitrogen 

stresses on wheat grain yields, in comparison with wheat-wheat rotation. This result is in 

agreement with other findings (López-Bellido et al., 2012). 

In high WHC soil, when wheat is fertilized in F1-I1 and F1-I0, there is no significant effect 

of the rotation type on the wheat grain yield production. This is primarily attributed to the 

type of soil, as for in- stance, high WHC can hold more green water than low WHC. Hence, 

the loss in yield that appeared in all rotations from irrigated to rain-fed in high WHC (i.e. 

I1 to I0) is due to water stress. Similar results were reported in the region (Sohi et al., 2009). 

However, this loss is not as prominent as the one seen in low WHC soil, where 11% versus 

18% of wheat grain yield drop.  

However, when nitrogen is limited in F0-I1 and F0-I0, as was reported for the soils of the 

NENA region (Darwish et al., 2018), the wheat-wheat rotation always leads to significantly 

lower wheat grain yields (4665 kg ha-1) than the other tested rotation types (over 5200 kg 

ha-1). This is because wheat-fallow and wheat-fava bean rotations are less intensive in 

terms of nitrogen demand, and do not neglect the nitrogen fixation ability of legumes 

(Constantin et al., 2010; Moreau et al., 2012), as well as the fertilization of potatoes in the 

wheat-potato rotation. This means that nitrogen and water stresses are higher in the case of 

a wheat-wheat rotation when compared with other rotations.  
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Nevertheless, still in high WHC soils, wheat-wheat is the only rotation in which wheat 

grain yields did drop significantly when changing from a wheat intensive management 

system in F1-I1 with 6083 kg ha−1 to wheat semi-intensive management systems in F1-I0 

and F0-I1 with 5250 kg ha−1 and 5126 kg ha−1, respectively, as well as when both nitrogen 

and water were ceased in F0-I0 with 4665 kg ha−1. This suggests that avoiding wheat 

intensive management systems, when in rotation with fallow, potato and fava bean, would 

not cause water nor nitrogen stress, preserving the level of wheat grain yields 

3.3.Nitrogen and water Apparent Recovery Efficiency by Difference (ARED) 

To grasp the added value of input resources (water and nitrogen) on wheat grain yields, the 

Apparent Recovery Efficiency by Difference (ARED) for the two input resources (Keller 

and Keller, 1995; Rao et al., 1992) ) is calculated, for wheat grain yields following different 

previous crops (i.e. wheat, fallow, potato and fava bean) in low and high soil water holding 

capacities [Eqs. (10) & (11) section 2.4.2]. ARED was computed for nitrogen in both cases 

of irrigation in I1 and I0, as well as for irrigation in both cases of nitrogen supply in F1 and 

F0 (Fig. 2). The separation of means was done using 2-way ANOVA analysis (i.e. Tukey 

test).  
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Figure 2. Apparent Recovery Efficiency by Difference (ARED) of nitrogen and irrigation of wheat crops, 

within each rotation, soil, and management type. a, b and c are symbols characterizing ARED which are 

significantly different or not regarding rotation. 

Concerning fertilization, wheat grain yields increased the most be- cause of nitrogen 

fertilization (ARED N) when cultivated in a wheat- wheat rotation, whether irrigated or 

not, in low WHC soil (Fig. 2i & iii) with 4.61 and 2.79, respectively, or in high WHC (Fig. 

2ii & iv) with 4.3 and 2.46, respectively. This means that for each 1 kg of added N, the 

increase in grain yields for wheat in the wheat-wheat rotation is greater than that observed 

in other rotations. In other words, wheat grain yields in a wheat-wheat rotation will be more 

sensitive to lower fertilization, and thus more likely to decrease than wheat grain yields in 

other rotations. The lowest slope observed for wheat grain yields was in the case of a wheat-

fava bean rotation, conforming to several studies that show that fava bean is an excellent 

previous crop (Angus et al., 2015; Plaza-Bonilla et al., 2017; Yau et al., 2003), which partly 

reduces the dependence of the main crop (i.e. winter wheat) on nitrogen fertilization 

(Voisin et al., 2013).  

In the case of wheat-fallow and wheat-potato rotations, the results were more nuanced. In 

low WHC soil, fallow land allows for a better use of N than potato as a previous crop, as 
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soil nutrients are rebalanced and soil biota is re-established (Plaza-Bonilla et al., 2017). On 

the other hand, potato becomes a better previous crop than fallow land in high WHC soils. 

This is due to the ability of these soils to store more water and facilitate the flux of nitrogen 

to the roots by mass flow, for the next crop. 

Concerning irrigation, the results are quite surprising as in low WHC (Fig. 2v), wheat in a 

wheat-wheat rotation requires less water for irrigation than in other rotations, which 

contradicts other studies that show that wheat is more sensitive to irrigation in a wheat-

wheat rotation type (Gu et al., 2002; Musick et al., 1994; Zhang and Oweis, 1999). This 

result can be explained by larger periods of fallow land than in the case of wheat-wheat 

rotations with a maximum of 3 months of fallow. Therefore leading to larger amounts of 

evaporated water. This evaporated water, however, becomes less important in high WHC 

(Fig. 2vi), in which more water is stored to its high capacity. In coherence with the literature 

(Passioura and Angus, 2010), well-fertilized wheat (F1) becomes more water reactive in a 

wheat-wheat rotation than other rotations. On the other hand, wheat in a wheat-fava bean 

rotation becomes more reactive to water if nitrogen is not applied. These results are 

consistent with multiple published studies, which state that legumes are excellent previous 

crops, especially in a poorly fertilized system. 

3.4.Trends of the crops’ yields (10 rotations) over the simulation period 

Out of the period of 20 years of simulation, 10 particular years (i.e. 1998, 2000, 2002, 2004, 

2006, 2008, 2010, 2012, 2014 and 2016) witnessed the cultivation of each of the three 

crops (i.e. wheat, potato and fava beans). In Fig. 3, trends of each of the three crops is re- 

presented, for both water holding capacity soils (WHC). In each year, four agricultural 

practices were simulated (Table 5). Thus, as we aim to show the general trend, the values 

of the four outputs of the four agricultural practices simulated were averaged. 
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Figure 3. General yield (kg ha-1) trends of the three crops simulated over the 10 rotations in both WHC 

soils. 

The average wheat grain yield trend shows a slight increase until the 6th rotation between 

1998 till 2008, then a sharp drop until the 8th rotation in 2012, then an increase afterwards. 

Similar to the trend of winter wheat, the yield of fava beans increased from the 1st rotation 

till the 2nd one, then slight increase till the 6th rotation before the sharp drop till the 8th 

rotation in 2012. An increase was seen afterwards till the 9th rotation before finally a 

decrease at the 10th one. As for potato, the trend was more or less stable with a slight 

decrease until the 7th rotation, continuous decrease was seen till the 8th rotation before a 

sharp increase at the 9th and 10th rotation. 

3.5.Rotation performance (productivity and efficiency) and economic risk of low 

relative productivity 

Productivity in terms of protein and net profit at rotational level [Eqs. (5) & (7) section 

2.4.1] versus the resource-use efficiency calculated for wheat crops [Eqs. (8) & (9) section 

2.4.2], in each of the cropping systems are demonstrated (Fig. 4) for low and high WHC 

soil types. In addition, based on the economic risk score calculated following Eq. (12) 

(section 2.5), the risk level of each of the cropping system is expressed 
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Figure 4. Risk representation of each of the cropping systems in low WHC soil denoted by the scale bar 

from dark blue (not risky at all) to dark red (very risky). The variation of protein production at rotational 

level versus wheat NUE (a) and wheat WUE (b), the variation of net profit at rotational level versus wheat 

NUE (c) and wheat WUE (d). A legend for each ID is presented to the right of the figure. 

Looking at the NUE (Fig. 4a & 3c), it was clear that for all systems efficiency decreases 

dramatically when nitrogen is applied. With respect to protein production (Fig. 4a), 

regardless of the management type, wheat-wheat in systems 1, 5, 9 and 13 and wheat-fava 

bean in systems 4, 8, 12 and 16 rotations produce the highest amounts of protein, which is 

between 0.75 and 1.1 t rotation−1 per ha, followed by wheat-potato rotations in systems 3, 

7, 11 and 15 that produce lower amounts depending on the management type, which is 

between 0.7 and 0.9 t rotation−1 per ha. Wheat-fallow rotations in systems 2, 6, 10 and 14 

produce the least amount of protein, which is between 0.3 and 0.55 t rotation−1 per ha. 
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These results show that most cropping systems, when grown in low WHC soil in such 

semi-arid areas, are over-fertilized, which is relatively consistent with previous studies 

(Asseng et al., 2001; Ben Zekri et al., 2018; Garabet et al., 1998). Residual soil nitrogen 

can be subject to nitrification in well aerated loamy soils and nitrates can be leached and 

pollute the groundwater (Darwish et al., 2003). 

Regarding the net profit (Fig. 4c), it is obvious from the results that the wheat-potato 

rotation is the most profitable rotation among the different rotations, ranging from 8500 

US$/rotation/ha to 8700 US$ rotation−1 per ha. Wheat-fava bean, with nearly 2000 US$ 

rotation−1 per ha and wheat-wheat, with around 1300 US$ rotation−1 per ha rotations 

follow. Eventually, wheat-fallow is the least profitable in terms of net profit, with around 

660 US$ rotation−1 per ha. This also confirms that the cropping systems within the area are 

over-fertilized since efficiency decreases while the net profit does not witness a similar 

increase when intensifying the management system. In the long term, these practices may 

affect soil-ecosystem functions. 

The wheat-potato rotation is the riskiest one, compared to other rotations. In addition, the 

wheat-fava bean rotation is not just more profitable than the wheat-wheat rotation, it is also 

economically much less risky. Thus, growing legumes in rotation with wheat reduces 

economic risk, as well as water and nitrogen dependence, compared to other rotations. 

Similarly, and on a more general basis, in low WHC soil types, the more intensive the 

systems, the economically riskier they are. This result contradicts several other studies that 

suggest intensification, as a factor, to increase production stability (Gaudin et al., 2015; 

Hartmann et al., 2015). This result shows that by intensifying the system in low WHC, that 

is to say dry-land soils that are poor in terms of physical and biological properties, 

productivity remains, efficiency decreases and economic and environmental sustainability 

decrease.  

By looking at the WUE, intensive systems, except wheat-fallow rotations, are more 

efficient in terms of water-use than extensive systems. This result is consistent with the 

literature, which mentions that water is one of the most limiting factors in shallow soils of 

arid areas (Sultana et al., 2009). Semi-intensive and extensive systems, such as in systems 

8, 9, 11, 12, 13, 15 and 16, are then less efficient in terms of WUE. Wheat-fallow systems, 
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especially the extensive ones (i.e. 10 and 14), are the least efficient in terms of water, 

basically due to large amounts of evaporated water. 
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Figure 5. Risk representation of each of the cropping systems in high WHC soil denoted by the scale bar 

from dark blue (not risky at all) to dark red (very risky). The variation of protein production at rotational 

level versus wheat NUE (a) and wheat WUE (b), the variation of net profit at rotational level versus wheat 

NUE (c) and wheat WUE (d). A legend for each ID is presented to the right of the figure. 

By looking at the NUE (Fig. 5a & c), in high WHC soil, two groups of systems could be 

observed, belonging to fertilized low NUE and un- fertilized systems high NUE. Within 

the second group, wheat-fava bean in systems 4, 8, 12 and 16 and wheat-fallow in systems 

2, 6, 10 and 14 rotations are superior to wheat-wheat in systems 1, 5, 9 and 13 and wheat-

potato in systems 3, 7, 11 and 15 rotations in terms of NUE. With respect to protein 

production (Fig. 5a), wheat-wheat and wheat-fava bean rotations were the best rotations 

compared to the other two rotations (i.e. 1.2–1.5 t rotation−1 per ha), followed by wheat-

potato (i.e. 1.1 t rotation−1 per ha) and wheat-fallow (i.e. 0.7 to 0.8 t rotation−1 per ha) 

rotations. Results for soils with high WHC show that all rotations, except the wheat-wheat 
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rotation, are over-fertilized. As for the net profit, regardless of the soil type and WHC, the 

wheat-potato rotation is the most profitable rotation with up to 12,000 US$ rotation−1 per 

ha. Wheat-fava bean and wheat-wheat rotations follow with 3500 US$/rotation/ha and 

2500 US$/rotation/ha, respectively. The wheat- fallow rotation comes last with around 

1500 US$/rotation/ha. 

Comparing the results of high WHC to those of low WHC soil types, wheat-wheat and 

wheat-potato rotations in high WHC soils become much less risky in terms of economic 

risk of low productivity when intensive management in terms of nitrogen is avoided. 

Wheat-fallow and wheat-fava bean rotations, similarly to low WHC soils, are the least 

risky, economically, if adopted by farmers. 

Regarding the WUE (Fig. 5b & 5d), the results show that water is not a limiting factor in 

high WHC soils (Zhang et al., 2008). Even though fertilized systems have shown slightly 

higher WUE than non-fertilized systems, the difference is not significant. 

4. Discussion 

When considering high resource-use efficiency, high system productivity, including 

protein and profit, as well as low economic risk in terms of system sustainability as a whole 

package, it is clear that there is no comprehensible optimal scenario. Depending on our 

simulation results, the productivity in terms of protein and net profit of the different wheat-

based cropping systems in two different soil WHC types, taking into consideration risk and 

wheat efficiency results, are plotted on a conceptual guide-map (Fig. 6). In addition, the 

productivity frontier is displayed to understand the best attainable scenarios 
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Figure 6. Conceptual guide-map defining the behaviour of the most widespread cropping systems taking 

into account the inputs of the wheat crop, rotational outputs, wheat efficiency, and economic risk of low 

relative productivity. WW, WF, WP and WFB correspond to wheat-wheat, wheat-fallow, wheat-potato, and 

wheat-fava bean rotations, respectively. The darker the represented system area, the more intensive the 

management system. 

Using this conceptual guide-map (Fig. 6) is essential for comparing the performance of the 

different wheat-based cropping systems, but also to identify the possible levers to improve 

the performance of these systems: 

- Preserving deep soils for wheat cultivation: Such a strategy is achieved by combatting 

ongoing soil degradation, especially in dry and sub-dry areas. The presence of many typical 

cereal area plains in the Mediterranean region with low soil water holding capacity results 

in grain yield reduction due to post-anthesis terminal drought where a strong relationship 

was found between actual evapotranspiration in the grain filling phase and the final grain 

yield. (Karrou and Oweis, 2012). As an example, the soil in the Medjerda-Tunisia (Souissi 

et al., 2017), Saïs-Morocco (Mohamed et al., 2018) and the Bekaa plain of Lebanon 
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(Darwish et al., 2006b) typical cereal plains are more than 60% characterized by a low 

water holding capacity.  

Deep soils in arid area are currently mostly dominated by cereal crops, especially durum 

and soft wheat, but a wide range of irrigated crops can also be observed, such as vegetables, 

orchards and fodder crops which represent at least 30% of the total cultivated area 

(Caiserman et al., 2019). These crops are less sensitive to the depth of the soil than cereal 

crops. Therefore, keeping deep soils for cereals could be a leverage for policy-makers in 

order to increase their production, input-use efficiency, and reduce the economic risk of 

low relative productivity by at least 48%, 35% and 38% respectively, as shown in this 

study; 

- Reduction of the areas dedicated to wheat-fallow cropping systems (WF in Fig.5): such a 

cropping system is characterized by low economic and nutritional performances compared 

to other cropping systems. This explains why this system has gradually disappeared from 

arid areas, and only exists for those practicing multiple activities (MoA, 2010). For those 

farmers, the advantage of this system is that it requires very few inputs, particularly in high 

WHC soils and involves mainly very little risk compared to other cropping systems. Today, 

in the Mediterranean region, even if the areas dedicated to this type of rotation are less 

common than those dedicated to other rotation types, half of the land is left uncultivated 

each year (López-Bellido and López-Bellido, 2003). Most of the current intensification 

policies in dry areas encourage the mobilization of more inputs by totally or partially 

subsidizing access to irrigation water, fertilizers, seeds, etc. By promoting wheat-based 

alternative systems other than wheat-fallow, it is potentially possible, according to our 

results, to increase the two-year rotational protein production by at least 50%, at the Bekaa 

plain level; 

- Intensification of wheat cultivation by increasing the amount of inputs: as expressed 

before, this lever is the most used by policy-makers and farmers to increase wheat 

production (Pala et al., 2007; Sadras, 2004). The guide-map (Fig. 6) shows that the 

intensification by in- creasing inputs is not effective in all cropping systems and the effects 

on rotational performance, efficiency and risk are not consistent with all cropping systems. 

Unfortunately, most farmers manage wheat cultivation regardless of the rotation type 
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(Armengot et al., 2011), by considering intensified wheat management systems, presented 

in a wheat- wheat rotation as a reference pathway to increase productivity (Balkovič et al., 

2014). Such means, which are encouraged by policy- makers, are not always reasonable as 

the efficiency of wheat in utilizing the resources decreases dramatically in different dry 

areas in the Mediterranean (Ben Zekri et al., 2018; Giménez et al., 2016; Ryan et al., 2007; 

Souissi et al., 2017; Yau et al., 2003). 

- Switching from wheat-wheat rotation to wheat-legume crops (i.e. fava bean in our study): 

The wheat-legume rotation has shown better productivity than the wheat-wheat system, 

significantly higher efficiency in terms of nitrogen and water, and much lower economic 

risk. Such findings were not very surprising as diversified rotations with catch crops usually 

yield high NUE (Beaudoin et al., 2005; Hansen et al., 2015; Moreau et al., 2012). Growing 

winter wheat with low in- puts leads to a small sacrifice in terms of productivity, which 

may be a reason why farmers prefer intensified wheat-wheat cropping systems. Apart from 

fertilization, mechanization limitations in legumes cultivation and the dependence on 

labour, including weeding and harvesting, as well as establishments (e.g. storage 

warehouses), which would re- quire high costs if not already owned by the farmer, are also 

obstacles preventing farmers from an easy switch to wheat-legume rotations. Moreover, 

fava beans production is a local product, which is sold locally and thus linked to the 

national level. This could be attributed to the low-trust that is given by farmers regarding 

national and local markets fearing “unlawful speculation”. Instead, many of them would 

prefer investing in wheat cultivation knowing in advance that the prices will not witness 

any change, even if negligible, as the government buys periodically the grain yield. 

Indeed, wheat farmers in Lebanon as well as in the MENA region do over-fertilize their 

crops for several reasons. First, farmers tend to believe that applying high rates of N would 

decrease their economic risk by increasing the grain weight and the final grain yield, and 

second, because they do benefit from stable prices due to the support system at the national 

level. This issue (i.e. over-fertilization) has been widely reported in Tunisia (Cheikh 

M’hamed et al., 2014; Thabet et al., 2010), Egypt and Morocco (FAO, 2018). In another 

study, it was also reported that the over nitrogen fertilization all over the Mediterranean is 

highly impacting, negatively, the soil and water quality in the area in addition to reducing 
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the economic yield, as the huge N input represents 15% of the input cost in Morocco (Heng 

et al., 2007). On the other hand, a study in Italy has suggested the increase of nitrogen 

application to up to 200 kg ha−1, which are similar to the rates applied in the Bekaa plain, 

aims for higher grain weight and better yield, taking into account the high environmental 

impacts (e.g. nitrogen leaching) (Abad et al., 2004). 

5. Conclusions 

Broadly, as frequently cited, increased production as well as in- creasing the efficiency in 

using the resources are the main requirements for feeding a vastly growing and changing 

world (Godfray et al., 2010). Many farmers, who work under small profit margins seek 

high production as a primary goal like many industrialized systems, which de- finitely trade 

off ecosystem values and environmental aspects (Foley et al., 2005). Such an approach 

eventually leads to what we witness today in terms of negative environmental 

consequences and resource depletion (Pimentel, 2005), as well as negative social impacts 

(Marks et al., 2010). The results of our research showed that careful considerations should 

be coupled with recommending a specific cropping system, especially at field level. No 

optimal scenario was found in terms of rotation and management, that may simultaneously 

guarantee low risk, significant protein production, large net profit, and high resource- use 

efficiency, including high NUE and WUE, at least for the rotations simulated in this study. 

Several studies have analyzed one crop or one cropping system in relation to its 

productivity and efficiency. Our results, nevertheless, by allowing the farmers and policy-

makers to categorize existing systems in terms of their performance and risk, indicate that 

at field level, a wheat-legume rotation in which wheat is cultivated under semi-intensive 

and/or extensive agricultural management is very recommended, especially for those who 

cannot bear high- risk systems, securing both high efficiency in terms of resource-use and 

great protein production. In future research, anticipating our results, we intend to upgrade 

this study to the farm level, where more criteria and parameters may be added to propose 

a whole integrated system that is profitable, non-risky and sustainable, overpowering food 

security deterioration and nevertheless efficient in terms of resource-use efficiency. 
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1. General context and main methodological challenges 

The work carried out in this thesis has brought new knowledge on the potential of the 

optical and Synthetic Aperture Radar (SAR) C-band data for the classification of winter 

wheat and the monitoring of its phenological cycle under semi-arid and dry sub-humid 

Mediterranean conditions. Add to that, ability of simulation crop models (i.e. CropSyst) to 

support taking decisions on which cropping systems to promote, is also addressed within 

the scope of the brought knowledge. The cropping systems to be promoted do exist and are 

based on a very important crop in relation to food security (i.e. winter wheat) in a 

heterogeneous area (i.e. Bekaa plain, Lebanon). 

Wheat is a capital crop for Lebanon. A significant amount of this wheat is imported (over 

600,000 tons) (MoA, 2010). Nevertheless these imported quantities differ from one year to 

another depending on the production of the year. Estimating annual production quantities 

before the end of the cropping season is therefore crucial. In this context, several methods 

are proposed: structural surveys of farmers, biophysical modeling according to climatic 

conditions, satellite images, etc. In this study we proposed the use of optical images 

(Sentinel-2) and radar images (Sentinel-1) to classify winter wheat and monitor its 

phenology, respectively. However, at least 3 methodological challenges are to be met: 

First, classification to be carried out before the end of the season. Second, validate the 

results on different seasons with different climatic conditions. Third, distinguishing wheat 

from similar cereal crops (e.g. barley and triticale). Moreover taking into account the 

complexity of the C-band radar signal, few studies have analyzed the C-band temporal 

behavior of crops and instead optical-derived NDVI was utilized to understand the whole 

crop cycle.  

The satellite images allow us to estimate the areas occupied by the wheat and thus an 

estimation of the productions. However, they remain insufficient to inform us on the wheat-

based cropping systems, which are promoted by intensifying wheat management, affecting 

the environment and increasing the risk taken by the farmer. 

In this context, analyzing the performance of wheat-based cropping systems at the level of 

the study area raises two major methodological challenges: 
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1- To identify and define dominant wheat-based cropping systems taking into account the 

diversity of preceding crops (wheat-wheat, wheat-potato, wheat-fallow and wheat-fava 

bean), soil types (especially with respect to their water holding capacity), the climate of the 

year and wheat agricultural practices (nitrogen and water). 

2- To evaluate the behavior of the different dominant wheat-based cropping systems 

agronomically, environmentally and economically. For this type of evaluation, we 

mobilized the CropSyst model (Stockle et al., 2003) in addition to the calculation of a 

number of indicators related to the economic risk, which the farmer could undertake 

according to the different wheat agricultural practices to be undertaken. 

Therefore the objectives of the current thesis were: first, to employ optical satellite images 

(Sentine-2) to classify winter wheat crop over the region of Bekaa with cross year 

validation, before the end of the cropping season (harvest). Second, to investigate the 

potential of SAR data to monitor the whole crop cycle of wheat. Third, to evaluate the 

performance of the wheat-based cropping systems that exist in the Bekaa plain. 

2. Main results  

2.1.Wheat classification. Accuracies and areas 

The automated classification approach presented in this thesis (surnamed SEWMA) allowed 

the classification of winter wheat crop throughout 2016 and 2017 cropping seasons, four 

to six weeks prior to harvest. SEWMA has shown high accuracy (87% in 2016 and 82.6% 

in 2017) even in climatically different years and with the existence of several crops with 

similar NDVI yearly profiles (i.e. barley and triticale). Nevertheless, wheat areas have been 

calculated and a decrease from 11,063 ± 1309 ha in 2016 to 7605 ± 1184 in 2017 was 

observed. This decrease is due to different reasons including; (1) agricultural practices; (2) 

corrupt subsidy policies; (3) the Syrian war and (4) marketing policies. As for the spatial 

distribution of wheat in the area of study, we found that wheat cultivations were denser in 

areas with more available water and shallower water table (i.e., West Bekaa plain). 

2.2.First experience with SAR in mapping wheat phenology 

Then, an operational approach was developed for monitoring the cycle of winter wheat on 

plot scale using C-band SAR data (Sentinel-1) through its two available polarizations (VV 

and VH). In West Bekaa, the phenological cycle of the wheat plots was monitored. Three 
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key phenological phases were mapped (germination, heading and soft dough), in addition 

to harvesting event. On another part of the Bekaa plain (North Bekaa), harvesting, which 

is earlier than West Bekaa was automatically mapped. It was found the VV polarization at 

low incidence angle (32°-34°) was best to map heading phase, VH at high incidence angle 

(43°-45°) was best to map soft dough phase, and VV/VH at low incidence angle (32°-34°) 

was the best to map germination and harvesting. The Root Mean Square Error (RMSE) 

calculated for each of the phases in West Bekaa showed values of 2.9, 5.5, 5.1 and 3.0 days 

for germination, heading, soft dough and harvesting, respectively. In addition, an RMSE 

of 4.5 days was obtained when mapping harvesting for North Bekaa. Moreover, we have 

also noticed that early germination led to early heading, in its turn early heading led to 

early soft dough, while early soft dough led to early harvesting, and vice versa. 

2.3.Which wheat-based cropping systems to be promoted? 

Our objective was to feed scientific debates on what wheat-based cropping systems to be 

promoted in the Bekaa region, and consequently more generally in the semi-arid zones. 

Concerning this point, at least three results are to be raised: 

1- There is no optimal scenario in terms of rotation type and management, which 

would guarantee maximum performance (productivity and efficiency) and 

minimum economic risk, simultaneously. However, wheat-legume rotation, in 

which wheat is cultivated under semi-intensive and/or extensive agricultural 

management is much recommended. Especially for those who cannot bear high-

risk systems and for securing high system efficiency in utilizing the external 

resources (water and nitrogen), wheat-fava bean rotation is a much better substitute 

to the intensive wide-spread wheat monoculture system.  

2- Intensive wheat-wheat or wheat-potato cropping systems that are encouraged by 

the public authorities because of their economic viability are economically risky 

and also inefficient. This poses an important question regarding the political 

choices to be made. It would seem unwise to continue promoting these systems 

whatever the biophysical context (type of soil, type of climate) or socio-economic 

context related to the farmer's ability to invest. Intensive systems are indeed very 

demanding, otherwise these systems become economically very risky (because they 
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are often dependent on the rain during the season), or inefficient because of the 

presence of several limiting factors. 

3- Extensive systems that are weak in terms of productivity (e.g. wheat-fallow) will 

continue to exist despite their low productivity. In many cases, these systems are 

cultivated as income supplement for those exercising different professions. The 

areas dedicated to these systems are today far from negligible and are probably an 

important alternative to increase the total production of wheat. 

Overall, unlike current policies, which recommend intensive systems, it is clear today that 

many wheat-based cropping systems could/must have coexisted with a variety of 

production objectives. The figure x (see section ...) illustrates the positioning of each 

system according to the farmer's investment capacities, the economic risk to run, the 

economic profitability and the efficiency of resources mobilization. 

3. Research perspectives 

Several future research perspectives have emerged from this work. In this section, two 

types of perspectives are presented. On one hand, the methodology related perspectives, 

which would solidify the proposed approaches for clearer insight and increased confidence 

in the outputs. On the other hand, on a wider scale, application related perspectives, which 

would allow improving the robustness in addition to strengthening the impact on policies 

and thus on end-users. These outputs can alleviate the pressure exerted on land resources 

and can reduce the negative impact of mismanaged agricultural practices often tagged with 

mining practices. 

3.1.Methodology related perspectives 

3.1.1. Crop classification 

Cloudy conditions are the main limitations of optical satellites, which in most cases would 

lead to losing data (pixels). For this, several algorithms (e.g. Mean Attribute, Most 

Common Attribute value and k-nearest neighbor imputation) have been proposed to fill the 

pixels removed due to clouds (Abdallah and Shimshoni, 2014). This would thus lead to 

potentially improving the output accuracy. In addition, for our case, Sentinel-2B could not 

be used, otherwise more available images could be available and thus would decrease the 
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outputs uncertainties (Li and Roy, 2017). Moreover, the inclusion of radar data (i.e. SAR 

data) might improve the confidence in the classification outputs (Inglada et al., 2016). 

Furthermore, anticipating the areas cultivated with winter wheat and predicting the yield 

with accepted precision, would assist the national authorities in undertaking needed 

decisions serving food security. 

3.1.2. Phenology monitoring 

To achieve full crop monitoring, estimating the phenology time is not enough. Thus, 

estimating crop bio-physical factors related to crop growth (Mattia et al., 2003) is desired 

to fully monitor the crop cycle. More specifically, estimating the phenological phase date, 

in addition to the corresponding crop biomass (by estimating the LAI) and canopy water 

content would update farmers and decision makers on the crop current status. Thus, needed 

interventions (e.g. irrigation and fertilization) will not just be driven by the phenology time, 

also by crop bio-physical status.  

3.1.3. Crop modelling 

Calibration of the crop model is a very important step in order to generate reliable results 

of the simulations (Stockle et al., 2003; Suárez-Rey et al., 2016). For our case, for potato 

and fava bean crops, CropSyst was calibrated relying on the survey results, instead of field 

experiments. Thus, conducting field experiments with in-situ measurements of the 

agricultural parameters would have improved the evaluation results of CropSyst regarding 

these two crops. Moreover, when setting up the scenarios, regarding the management 

(nitrogen and water), only 0 (no fertilization and/or no irrigation) and 1 (full fertilization 

and/or full irrigation) options were employed. Hence, simulating more management 

options (e.g. semi-irrigation, semi-fertilization) would lead to deeper insight on the ideal 

management. 

For the economic risk analysis, including the annual variation of the costs (Souissi et al., 

2017) would allow to observe the risk in two clear dimensions. First, the dimension related 

to low productivity, which leads directly to low profitability and second, the dimension 

related to possible year-to-year prices fluctuations, which would in-directly lead to 
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increased or decreased risk. In addition, legumes are less cultivated, comparing to wheat, 

due to many reasons, including market organization. Supporting such cultivation (fava 

bean) financially or technically by organizing markets would significantly encourage 

farmers to switch so such a system (wheat-fava bean). 

Eventually, if the above discussed information are already applied and/or taken into 

account, the wheat-fava bean cropping system would still appear as a better substitute. 

However, the ultimate management would be better observed on one hand, and the risk 

score would be more robust, on the other. 

3.1.4. Connecting remote sensing and crop growth models 

Remote sensing and crop modelling techniques can be indeed connected and one can feed 

the other with important information. For future research, the output of the phenology 

mapping using remote sensing (SAR images) can be analyzed and used to evaluate the 

cropping systems. This would allow a better calibration for the phenology of the crop. In 

addition, this would provide spatial variability leading to higher precision. 

3.2.Application related perspectives 

3.2.1. Extending early classification and phenology monitoring to more crops on 

different study sites 

The current free optical and radar sensors, Sentinel-2 (A&B) and Sentinel-1 (A&B) have 

made it easy to acquire frequent images of any place in the world. With the short revisit 

time, a free optical image could be acquired every 5 days and a free SAR C-band image 

could be acquired every 6 days (Drusch et al., 2012; Wagner et al., 2009). Each of both 

sensors is characterized by high spatial resolution (10m). The high spatio-temporal 

resolution of these radar (Sentinel-1) and optical (visible and infra-red) sensors opens 

encouraging prospects for developing operational approaches for classification and 

mapping different crops. The prospects, which are based on the use of remote sensing are 

very important to food security and relevant to the Sustainable Development Goals (SDG).  

The proposed classification and monitoring approaches in this study can be potentially 

applied to several other important crops. Rice, maize, alfalfa and potatoes are some of the 
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very important crops, cultivated worldwide (Ferrant et al., 2017). Thus, automatic 

classification of the temporal and spatial distribution of these crops is very important as 

they are highly significant to the global diet. Climate change, nevertheless, has been 

strongly, directly and/or indirectly, affecting the crops’ season. Hence, monitoring the 

growing cycle of these staple crops would bring to our knowledge the way the growth cycle 

is affected by the changing climate (Richter and Semenov, 2005; Salack et al., 2015). In 

addition, to understand the possible solutions and alternative plans to maintain the global 

production (e.g. genetically modified crops, switching to different seasons and switching 

to different cultivars). 

3.2.2. Coupling crop monitoring with bio-physical simulation models for better 

calibration and enhanced simulation results 

Crop models have witnessed vast development in the last few decades. In fact, they have 

advanced from the initial qualitative simulation of crop growth to quantitative simulation 

of crop growth and thus from simulation of single physiological and ecological growth 

processes to simulation of the whole growth process (Montoya et al., 2018). By combining 

crop models with multidisciplinary approach (e.g. remote sensing), considerable progress 

shall be seen. When crop yields are estimated on a regional scale, the spatial distribution 

of soil properties (soil moisture), canopy bio-physical variables (LAI, biomass, nitrogen 

content, etc.), and meteorological data are often uncertain (Hansen and Jones, 2000). These 

uncertainties mainly affect crop model physiological growth simulation processes, leading 

to larger errors when simulating with crop growth models. Remote sensing technology has 

been developing rapidly and quantitative estimates of soil and canopy properties are more 

available. Indeed, remote sensing has been widely used to estimate soil (e.g. soil moisture) 

(Baghdadi et al., 2018, 2017, 2009; Paloscia et al., 2013) and canopy properties (e.g. LAI, 

ET, APAR, biomass…etc.) (Bastiaanssen and Ali, 2003; Jin et al., 2015). These canopy 

state variables and soil property variables need to be integrated with crop models since they 

are important parameters to simulate crop growth.  
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3.2.3. To what extents the obtained results can be extrapolated? 

The results (trends) obtained in this study could be extrapolated to other regions in Lebanon 

and over the Mediterranean/semi-arid regions. However, there are some issues to be taken 

into consideration. Governmental policies (e.g. wheat subsidy system) as seen and 

discussed in this study strongly affect the farmers’ perspectives and thus the results 

(Calatrava et al., 2011; Giannakis and Bruggeman, 2015). Add to that, the access to 

resources (nitrogen and water) could strongly affect the results since limited access indeed 

increases the risk, unlike more free access (Shiferaw et al., 2009). In addition, as discussed 

before, model calibration is a very important and critical step to be undertaken. Mobilizing 

the same framework requires experimental data and field survey, at least to 

validate/evaluate the model if the area is similar (i.e. Mediterranean/semi-arid). Thus, more 

resources are needed before fully extrapolating the results. 

The obtained results indeed assist policy makers in taking decisions regarding what kind 

of cropping system to promote. However, for more firm assistance, more additional steps 

are needed. Hence, for future perspectives, different scenarios of policies can be simulated. 

As policies are generally susceptible to change, simulating different scenarios (e.g. absence 

of wheat subsidy system or more support to legumes cultivation) would further assist policy 

makers in taking decisions based on different types of policies, and the output of each.
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Appendix A 

In this appendix, the in-situ datasets and the remote sensing datasets are illustrated. In the 

following tables, we illustrate the number and dates of images used in this thesis. 

Table 1 Sentinel-2 images used for 2016, 2017 and 2018 cropping seasons. 

Sentinel-2 / Season Duration Number of images 

2016 January - May 8 

2017 January - May 8 

2018 November (2017) – August 

(2018) 

58 

 

Table 2 Sentinel-1 images used for 2018 cropping season. 

Sentine-1 (a & b) Number 

of images 

Duration Overpass Incidence 

angle 

2018 100 November 

(2017) – 

August (2018) 

Ascending 32°-34° (50 

images) 

43°-45° (50 

images) 

 

Regarding the in-situ datasets, we illustrate the measurements done. The details of the in-

situ measurements include the type of measurement, the timing, and the number of 

replications, and are illustrated in table 3. 

Table 3 In-situ measurements, number of observation and replications, the phenological stages where the 

in-situ measurements took place and the way of measurement. 

Measurement Number of 

observations 

Phenological 

stages 

Number of 

replications 

Way of 

measurement 

Above ground 

biomass 

4 Tillering 

Booting 

Flowering 

3 (in each 

plot) 

Destructive 

method 
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Maturity 

Canopy water 

content 

4 Tillering 

Booting 

Flowering 

Maturity 

3 (in each 

plot) 

Oven-dried 

Above ground 

nitrogen 

2 Tillering 

Flowering 

3 (in each 

plot) 

Kjeldahl‐N 

method 

Soil water 

content 

5 Sowing 

Tillering 

Booting 

Flowering 

Maturity 

3 (for each 

horizon in 

each plot) 

Tube augur 
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Appendix B 

In this appendix, the climatic data of both 2016 and 2017 seasons are demonstrated. 

In table 1 below, for each month of each year, the averages of minimum air temperature, 

maximum air temperature, precipitation and incoming solar radiation, are illustrated for the 

Bekaa plain of Lebanon. 

Table 1 Precipitation, max air temperature, min air temperature and incoming solar radiation for each 

month in both years, 2016 and 2017. 

2016 Precipitation 

(mm) 

Max air 

temperature 

(C°) 

Min air 

temperature 

(C°) 

Incoming solar 

radiation (MJ 

m-2 month-1) 

January 64.0 9.9 0.1 280.3 

February 18.8 16.2 0.9 308.1 

March 52.4 17.5 4.1 550.8 

April 26.4 24.3 5.7 681.2 

May 45.8 24.9 7.7 862.9 

June 25.4 31.8 13.3 953.3 

July 0.0 34.6 14.1 847.2 

August 0.0 35.4 15.4 712.2 

September 0.0 30.1 12.3 625.7 

October 162.9 28.0 8.5 410.7 

November 9.8 20.3 3.1 241.2 

December 74.6 9.7 1.3 204.0 

2017     

January 58.7 10.9 -0.7 183.9 

February 69.5 13.2 -1.4 202.3 

March 145.7 16.4 3.8 319.5 

April 41.8 23.1 6.1 692.8 

May 22.1 27.6 9.1 860.8 

June 3.2 32.1 12.0 900.5 
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July 1.3 35.6 14.6 878.4 

August 1.6 35.3 13.2 807.6 

September 1.4 33.3 12.6 625.1 

October 64.4 25.7 8.7 446.6 

November 63.2 19.3 5.1 312.7 

December 72.2 17.2 2.2 231.9 
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Appendix C 

In this appendix, the CropSyst model description, in addition to the comparisons of 

simulated and measured data, which were carried out after the calibration of the crop 

parameters, are presented. The validation of wheat crop was done for the variables (DMP, 

AGN and SWC) mentioned in datasets (section 2.2.2) for different growth stages. As for 

the potato and fava bean, the calibration and validation processes were done solely for 

DMP at the end of the season.  

CropSyst model description 

The accumulation of biomass through time is simulated following two different 

approaches. The transpiration approach, which is a water-driven biomass function and the 

photosynthetic active radiation approach, which is a radiation-driven biomass function. 

The first approach, which is according to Tanner and Sinclair (1983), estimates the daily 

biomass production as follows: 

𝐴𝐺𝐵𝑇 = 𝐵𝑇𝑅 (
𝑇𝑎𝑐𝑡

𝑉𝑃𝐷
)                                                                                                         (1) 

where AGBT is the transpiration dependent above-ground biomass growth, BTR is the 

aboveground biomass-transpiration coefficient, Tact is the actual transpiration assumed to 

be equal to crop water uptake, which is a function of soil and leaf water potential, and root 

conductance; and VPD is the daily mean vapor pressure deficit, used to normalize BTR. 

Eq. (1) accounts for water-limited growth through Tact which could be lower than potential 

transpiration under optimal water supply. 

At low VPD values, Eq. (1) would not be suitable anymore. Thus, the second approach to 

estimate the daily biomass production is obtained through the direct conversion of 

intercepted photosynthetic active radiation to above-ground biomass as following 

(Monteith, 1977): 

AGBIPAR=RUE.IPAR.Tlim                                                                                             (2) 

where AGBIPAR is the daily aboveground biomass growth dependent on the intercepted 

photosynthetic active radiation; RUE is the light to aboveground biomass conversion factor 
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or radiation use efficiency; IPAR is the intercepted photosynthetic active radiation, and Tlim 

is the temperature limitation factor. Eq. (2) accounts for radiation limited growth through 

the radiation term that incorporates occasional cloudy conditions. Since daily biomass 

growth through both approaches corresponds to more limiting conditions for crop growth, 

the lower value of both is adopted. 

The nitrogen balance includes soil N transformations (mineralization, nitrification, 

denitrification, and volatilization), ammonium sorption, symbiotic N fixation, crop N 

demand, and crop N uptake (Stockle et al., 2003). 

The water budget in CropSyst includes precipitation, irrigation, runoff, interception, water 

infiltration, water redistribution in the soil profile, deep percolation, crop transpiration, and 

evaporation (Stockle et al., 2003). Potential ET (ETPotential) is split into potential 

transpiration and potential soil evaporation. The potential transpiration is calculated as a 

function of intercepted solar radiation by the crop green leaf area, while the actual soil 

evaporation is simulated by postulating two stages of drying. During the first stage, the 

evaporation proceeds at the potential rate until the water content in the top evaporative soil 

layer reaches the permanent wilting point (PWP). For the second stage drying, the equation 

of Campbell and Diaz is used (Bidinger and Johansen, 1988). 

Crop yield can be calculated as the total cumulative biomass at harvesting multiplied by 

the unstressed harvest index. The harvest index (HI), which is obtained from field data, can 

be adjusted during the calibration stage, to account for sensitivity to water and nitrogen 

stress during flowering and/or grain filling. 

Statistical indices computed for calibration and validation processes (wheat, potato and 

fava bean) 

Table 1 summarizes the statistical indices computed for calibration and validation 

processes for wheat, potato and fava bean. 
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Table 1 Statistical indices (RMSE and RRMSE %) computed after the calibration and validation of wheat, 

potato and fava bean 

Calibration    

RMSE DMP (kg/ha) SWC (m³/m³) AGN (kg/ha) 

Wheat 432.35 0.08 19.59 

Potato 760   

Fava bean 299   

RRMSE %    

Wheat 8.28 19.91 17.42 

Potato 1.52   

Fava bean 11.11   

Validation    

RMSE DMP (kg/ha) SWC (m³/m³) AGN (kg/ha) 

Wheat 1 589.1 0.07 9.6 

Wheat 2 560.8 0.1 16 

Wheat 3 503.7 0.09 40.1 

Wheat 4 656.3 0.1 13.7 

Potato 1 3022.8   

Potato 2 3022.8   

Potato 3 3021.8   

Fava bean 1 204.3   

Fava bean 2 203.2   

Fava bean 3 203.3   

RRMSE %    

Wheat 1 12.19 20.95 7.71 

Wheat 2 12.69 34.31 13.14 

Wheat 3 9.18 28.63 25.60 

Wheat 4 11.60 29.64 9.81 

Potato 1 8.16   

Potato 2 7.55   
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Potato 3 6.71   

Fava bean 1 9.72   

Fava bean 2 8.17   

Fava bean 3 6.85   

 

Crop parameters of wheat, potato and fava bean, after the model calibration 

In this section the crop parameters of wheat, potato and fava bean after calibration are 

illustrated (Table 2). 

Table 2 Crop input parameters used in CropSyst simulation. Parameters were measured experimentally 

(M), extracted from the literature (L), or from calibration (Cal) 

Parameter Source Wheat Potato Fava bean 

Biomass‐transpiration coefficient (Pa) Cal. 6.00 10.80 5.00 

Radiation use efficiency (g MJ‐1) Cal. 4.00 5.00 3.80 

Degree days emergence (°C d) M 180 258 70 

Degree days begin flowering (°C d) M 1350 640 700 

Degree days peak LAI (°C d) M 1650 1200 550 

Degree days begin grain filling (°C d) M 1750 750 800 

Degree days maturity (°C d) M 2820 1900 1300 

Base temperature (°C) L 0 2 3 

Cutoff temperature (°C) L 22 25 25 

Phenologic sensitivity to water stress L 0.5 1 1 

Maximum root depth (m) L 2 0.6 1.2 

Maximum LAI M 8 6 5 

Specific leaf area (m² kg-1) L 22 20 28 

Stem/leaf partition coefficient L 2 2 3 

Leaf duration (°C d) L 1000 800 800 

Leaf duration sensitivity to stress L 2 1 1 

Solar radiation extinction coefficient L 0.48 0.6 0.45 

ET crop coefficient L 1.15 1.15 1.05 

Maximum water uptake rate (mm day-1) L 10 12 9 

Critical canopy water potential (kPa) L -1300 -800 -1000 
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Wilting canopy water potential (kPa) L -2000 -1100 -1500 

Maximum harvest index, HI L 0.5 0.82 0.45 

HI sensitivity to stress at flowering L 0.1 0 0.3 

HI sensitivity to stress at grain filling L 0.05 0 0.15 
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