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Abstract: In the context of monitoring and assessment of water consumption in the agricultural sector,
the objective of this study is to build an operational approach capable of detecting irrigation events at
plot scale in a near real-time scenario using Sentinel-1 (S1) data. The proposed approach is a decision
tree-based method relying on the change detection in the S1 backscattering coefficients at plot scale.
First, the behavior of the S1 backscattering coefficients following irrigation events has been analyzed
at plot scale over three study sites located in Montpellier (southeast France), Tarbes (southwest
France), and Catalonia (northeast Spain). To eliminate the uncertainty between rainfall and irrigation,
the S1 synthetic aperture radar (SAR) signal and the soil moisture estimations at grid scale (10 km ×
10 km) have been used. Then, a tree-like approach has been constructed to detect irrigation events
at each S1 date considering additional filters to reduce ambiguities due to vegetation development
linked to the growth cycle of different crops types as well as the soil surface roughness. To enhance
the detection of irrigation events, a filter using the normalized differential vegetation index (NDVI)
obtained from Sentinel-2 optical images has been proposed. Over the three study sites, the proposed
method was applied on all possible S1 acquisitions in ascending and descending modes. The results
show that 84.8% of the irrigation events occurring over agricultural plots in Montpellier have been
correctly detected using the proposed method. Over the Catalonian site, the use of the ascending
and descending SAR acquisition modes shows that 90.2% of the non-irrigated plots encountered no
detected irrigation events whereas 72.4% of the irrigated plots had one and more detected irrigation
events. Results over Catalonia also show that the proposed method allows the discrimination between
irrigated and non-irrigated plots with an overall accuracy of 85.9%. In Tarbes, the analysis shows that
irrigation events could still be detected even in the presence of abundant rainfall events during the
summer season where two and more irrigation events have been detected for 90% of the irrigated
plots. The novelty of the proposed method resides in building an effective unsupervised tool for near
real-time detection of irrigation events at plot scale independent of the studied geographical context.

Keywords: irrigation; plot scale; near real-time; Sentinel-1

1. Introduction

Efficient management of water resources is required to achieve environmentally sustainable
development especially under changing climatic conditions and limited water resources. Fresh water
is mainly consumed in the agricultural sector, which is considered the world’s largest water user.
In fact, with the increase of the global population, irrigating agricultural crops is essential in order to
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achieve satisfactory agricultural production and income. However, with the decreasing supplies of
fresh water due to climate change, better management of irrigation policies is required to deal with the
high demand of food and limited water resources.

To support the management of irrigated agricultural policies, a spatially detailed quantification
of the irrigation extent and timing is required. This quantification is crucial to monitoring fresh
water consumption in the agricultural sector especially for regions suffering scarce water resources.
Unfortunately, the extent and distribution of irrigated areas as well as the irrigation timing remain
indefinite especially at large scale. Moreover, existing irrigation maps such as the Global Rain-fed,
Irrigated and Paddy Croplands (GRIPC) [1] and the Global Map of Irrigated Areas (GMIA) [2] products
remain inadequate for irrigation management at plot scale due to their low spatial resolutions (500 m
and 5 arc minutes, respectively).

With modern remote sensing, mapping irrigated areas has been the main concern for several
studies [3–5]. Both optical and radar data have been exploited to perform an irrigated/non-irrigated
classification maps. The use of multi-band optical data is mainly related to the assumption that
irrigated/non-irrigated crops could be classified using the temporal series of vegetation indices
such as the normalized differential vegetation index (NDVI) [3,5], normalized differential water
index (NDWI) [4] or greenness index (GI) [6]. However, optical data is not only limited to weather
conditions but also to the specific studied crop type. For this reason, several studies tend to map
irrigated/non-irrigated areas focusing on one specific crop type such as rice [7] wheat [8,9] or maize [10].

Recent works have shown that a synthetic aperture radar (SAR) signal seems to be more adequate
to map irrigated areas over different agricultural crops [8,11,12]. The use of a SAR signal for mapping
irrigated/non-irrigated areas over any vegetation cover is related to the fact that the radar signal is
sensitive to soil and vegetation water content [13,14]. Since irrigation eventually increases the soil and
the vegetation water content, the sensitivity of the radar signal to soil and vegetation water could
help detect these irrigation events. Through literature, it has been widely demonstrated that the
SAR backscattering coefficient (σ0) is directly related to the soil and vegetation water content [14–20].
Mainly for the irrigation task, Hajj et al. [21] have reported that a three-day-old irrigation point could
still be detected using X-band SAR data. In their study, they showed that the X-band radar signal
increases by more than 1.4 dB due to irrigation events occurring one day before the acquisition with
90 cm vegetation height. They also showed that for low vegetation cover (vegetation height = 25 cm)
the X-band SAR signal increases by 2.6 dB due to irrigation event one day before the SAR acquisition.
Similarly, Benabdelouahab et al. [22] have shown that C-band SAR data could be used to detect
irrigation activities over irrigated wheat plots with an interval of three days between the irrigation date
and the SAR acquisition date. Since irrigation is a time dynamic activity, an extensive multi-temporal
dataset is required to detect consecutive irrigation activities on the studied fields. In addition, high
spatial resolution SAR data is required to obtain irrigation information at plot scale. In fact, irrigation
information at plot scale is favorable especially in small agricultural areas. Among several SAR satellite
constellations, the time series acquired via Sentinel-1 (S1) SAR constellation (S1A and S1B) provides an
effective tool for large-scale irrigated area mapping and monitoring due to the unique combination of
high revisit time (6 days revisit period) and high spatial resolution (10 m × 10 m pixel spacing).

To preform irrigated area mapping, as well as other large-scale area mapping, both deep and
machine learning approaches have been extensively exploited since they provide acceptable results and
allow large-scale analysis [23,24]. Using the S1 temporal series and the machine-learning approaches,
several studies have achieved high-quality classification mapping with a good accuracy [24–27].
However, one of the most important questions about using machine learning approaches relates to the
dependency of these models on the terrain calibration data and the studied geographical context [28].
Such supervised classifications always depend on a training-validation procedure that requires a rich
set of labelled samples in order to build the predictive model. Moreover, for better performance, almost
all classifications performed via machine learning techniques require complete temporal series data
over the growing season, thus making the near real-time mapping more complicated.
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Most of the remote-sensing applications for irrigation monitoring mainly focus on the mapping
of irrigation extent without taking frequency and timing into account. On the other hand, obtaining
information about the period and frequency of irrigation over each agricultural cropland is more
significant in the context of irrigation management [29,30]. In fact, to understand the sustainability of
the water resources, irrigation timing and frequency are important especially in arid and semiarid
regions. Furthermore, in the context of irrigation water management, the early detection of existing
irrigation episodes over each cropland is of great importance for crop modelling in order to estimate
the water status and hence better schedule the irrigation episodes over croplands. Better scheduling of
irrigation activities can save water that may be used to irrigate more land particularly where water is a
limiting factor of agricultural production. In addition, the improvement of the water-use efficiency
(WUE) in irrigation requires a real-time control and optimization of the irrigation activities. In irrigated
agriculture, improvement of WUE is achieved by optimizing the timing and quantity of irrigation
applications [31]. This optimization of the irrigation schedule requires an early detection of irrigation
episodes over each irrigated agricultural plot. Moreover, the near real-time detection of irrigation
episodes can help monitor and assess the water consumption over agricultural areas. The arrival
of the Sentinel satellites (Sentinel-1/2), with high spatial and temporal resolutions, opens the way
toward building operational models capable of detecting irrigation events at plot scale. Therefore,
the challenge is to build an effective tool capable of detecting irrigation events at plot scale using simple
models that may not require extensive labelled samples (training/validation) and independent of the
studied geographical context.

In the context of irrigation water management, the objective of this study is to build a near
real-time irrigation detection approach at plot scale using Sentinel-1 time series. First, we analyzed the
sensitivity of the radar signal following irrigation events over irrigated plots for a study site located in
Montpellier, South-East France. Then, we build a tree-like approach for detecting irrigation events
based on the change detection of the SAR signal at plot scale co-jointly with the change detection of
the SAR signal obtained at grid scale (10 km × 10 km) which was used to eliminate the ambiguity
between rainfall and irrigation. Since the SAR signal obtained at plot scale could be also affected
by the vegetation contribution and the surface roughness, several filters considering these effects
were introduced in the proposed tree-based approach. The method was tested over irrigated plots in
Catalonia, Spain and in Tarbes, South-west France.

2. Materials

2.1. Study Sites

In this study, three different irrigation sites are examined. The first site is located in Montpellier,
southeast France (Occitanie region), the second is located in the Catalonia region of northeast Spain
and the third in Tarbes of southwest France (Occitanie region) (Figure 1). It is important to mention that
both the Montpellier and Catalonia sites are nearly similar in terms of climatic conditions given that
both zones are typically Mediterranean. The average annual precipitation in Montpellier is 629 mm
where that of Catalonia is 500 mm. However, the summer season in Catalonia is drier than that of
Montpellier. On the other hand, the climate in Tarbes is humid to oceanic with an average annual
precipitation of 1200 mm. The summer season in Tarbes is more humid with an average precipitation
of 300 mm in this season. However, in the three regions, irrigation mainly occurs in the summer season
between May and October of each year.
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Figure 1. Location of the three studied sites. In green, Montpellier of southeast France; in black,
Catalonia region in northeast Spain; and in red, Tarbes of southwest France. Irrigated plots are presented
in blue while non-irrigated plots are in red.

2.2. Montpellier Dataset

Irrigation dates over three plots in Montpellier are registered for the year 2017. The three plots
includes one maize plot denoted by (P1), one soya plot denoted by (P2) and one sorghum plot denoted
by (P3) (Figure 1). Table 1 summarizes the frequency and period of irrigation for each studied plot.
In general, irrigation over Montpellier takes place between May and October of each year corresponding
to the dry summer season. The sprinkler irrigation technique is generally used. It is good to mention
that not only the frequency of irrigation is available but also the exact date of irrigation for these plots.
Therefore, these three plots were first used to analyze the effect of irrigation events on the backscattered
SAR signal in order to build the suitable method capable of describing irrigation events at the plot.

Table 1. Irrigation information over three plots in Montpellier, south-east France.

Plot Crop Type Surface (ha) Number of
Irrigations Period of Irrigation Irrigation Type

P1 Maize 1.2 30 01 June–12 October 2017 Sprinkler
P2 Soya 0.8 13 29 May–13 September 2017 Sprinkler
P3 Sorghum 0.44 5 01 June–08 August 2017 Sprinkler

2.3. Catalonia SIGPAC (Geographic Information System for Agricultural Parcels) Dataset

Over the Catalonia region of northeast Spain, the General Direction of Rural Development of
the Generalitat of Catalonia provides the Geographic Information System for Agricultural Parcels
(SIGPAC) data. The SIGPAC data are based on cadastral plots digitized using aerial images at scale of
1:5000 and 25 cm spatial resolution. The graphical data of the SIGPAC provide the field boundaries. On
the other hand, alphanumerical data define each plot by several elements of information including an
identification code, surface area, land cover and irrigation indicator. The irrigation indicator shows the
presence (100) or absence of irrigation (0). Annual field campaigns are performed each year, in order
to update the database mainly for irrigation and land-cover information. In our study, 159,850 plots
(123,428 non-irrigated and 36,423 irrigated plots) of different crop types and irrigation coefficients have
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been used for the year 2018. Considering only agricultural crops (summer and winter crops) in the
study, forests, urban, and orchards plots were eliminated. The surface area of the plots varies between
0.1 ha and 65 ha. In general, winter cereals such as wheat, oat, and barely are rarely irrigated with
some exceptions. On the other hand, irrigated plots mainly include alfalfa, maize, grassland, beans,
rapeseed, and rice. The study area is mainly irrigated using inundation in the old irrigation district and
sprinkler or dripper irrigation in the new irrigation district. Fields that have access to water are always
irrigated, and fields that do not have access to water are not. The irrigation period occurs mainly in
summer, from May to September, and the frequency depends on the irrigation district (old and new).
Since irrigation frequency and dates are not available via the SIGPAC data, the irrigation information
over the plots was used to analyze the performance of the proposed approach.

2.4. Tarbes Dataset

A field campaign was conducted in Tarbes, southwest France (Figure 1) over irrigated summer
crops in 2017 where information about the existence of irrigation was registered for each plot. During
this field campaign, 150 irrigated plots including 135 irrigated maize plots and 15 irrigated soya plots
were localized. The surface area of the plots varies between 0.15 ha and 28 ha. Irrigation over Tarbes
usually takes place between May and October of each year. The most common irrigation technique
used in this site is the sprinkler irrigation technique. Unfortunately, irrigation frequency and dates were
not available over these plots. For this reason, these plots were used for analyzing the performance of
the proposed model.

2.5. Sentinel-1 Synthetic Aperture Radar (SAR) Time Series

In this study, a total of 348 C-band (5.405 GHz) S1 SAR images acquired by S1A and S1B in both
ascending (afternoon at 18:00 UT) and descending modes (morning at 06:00 UT) were used. Over the
Montpellier and Tarbes sites, 92 images (46 ascending and 46 descending) images were obtained for each
of the two sites for the period between March 2017 and November 2017. This period corresponds to the
irrigation period over these two sites. However, for the Catalonia site, 162 images (82 ascending and 82
descending) were used covering a period between September 2017 and December 2018 that correspond
to the irrigation information obtained by SIGPAC for 2018. All the images were acquired in the
interferometric-wide (IW) swath with VV (Vertical-Vertical) and VH (Vertical-Horizontal) polarizations.
In this study, only VV polarization was considered since it is more sensitive to the soil water content
than the VH polarization [32]. The 348 images are derived from the Ground Range-Detected (GRD)
product with pixel spacing of 10 m × 10 m. The images were downloaded via the European Space
Agency (ESA) website (https://scihub.copernicus.eu/dhus/#/home). The S1 toolbox developed by ESA
was used to calibrate the 348 S1 images. The calibration (radiometric and geometric calibrations)
converts the digital number into backscattering coefficients in linear units (radiometric calibration) and
ortho-rectifies the images (geometric calibration) using a 30-m digital elevation model of the Shuttle
Radar Topography Mission (SRTM).

Figure 2 shows the repetitiveness of the S1 data in ascending “A” and descending “D” acquisition
modes over the three study sites for August 2017 (Montpellier and Tarbes) and August 2018 (Catalonia).
For each month, 10 SAR images (5 ascending and 5 descending images) are acquired over each study
site. For the Montpellier site (Figure 2a), the descending SAR image (morning) is acquired 36 h before
the ascending evening image with an incidence angle of 38.1◦ and 39.3◦, respectively. For Tarbes
(Figure 2b), the morning acquisition is also 36 h prior to the evening acquisition with an incidence
angle of 36.2◦ and 40.3◦, respectively. Over Catalonia (Figure 2c), the morning acquisition is only 12 h
prior to the evening acquisition (both images acquired on the same date) with an incidence angle of
39.5◦ and 43.2◦, respectively.

https://scihub.copernicus.eu/dhus/#/home
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Figure 2. Frequency of the Sentinel-1 images in ascending “A” (afternoon) and descending “D”
(morning) modes for one month over (a) Montpellier, (b) Tarbes and (c) Catalonia. The number next to
each line represents the incidence angle for each acquisition.

2.6. Sentinel-2 Optical Time Series

We obtained 15, 22 and 17 S2 optical images over Montpellier, Tarbes and Catalonia, respectively,
covering the same period of the S1 acquisitions (Section 2.3). The optical cloud-free images were
downloaded over each study site with a frequency of approximately one image per month. These
optical data were obtained via the Theia website (https://www.theia-land.fr/) which provides S2 images
corrected for atmospheric effects (Level-2A). Optical images were used to calculate the NDVI values.
The NDVI values were integrated as an additional post-processing filter in the proposed change
detection method.

3. Methodology

3.1. Overview

For the three study sites, the average Sentinel-1 SAR backscattering coefficients (σ0) in VV
polarization and the incidence angle values (θ) were calculated at both plot scale

(
σ0

P

)
and grid scale(

σ0
G

)
(10 km × 10 km). Since rainfall and irrigation events have the same effect on SAR σ0 values

(σ0 increases after rainfall or irrigation), this study proposes to remove or minimize the false detection
of irrigation events due to rainfall events by using the mean SAR backscattering signal at grid scale
(10 km × 10 km). The SAR signal at grid scale obtained from bare soil areas with low vegetation cover

https://www.theia-land.fr/
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is assumed be a descriptor of rainfall events. For the plot scale, σ0
P was obtained by averaging the

backscattering coefficient (σ0) in the linear unit of all the pixels within each plot. For the grid scale,
σ0

G was obtained by averaging σ0 values in a linear unit of all agricultural bare soil pixels existing
within each grid cell. The average backscattering coefficient, at plot and grid scales, helps reduce the
speckle noise in the SAR data. Moreover, at each available S2 image, the average NDVI values were
calculated for each plot and grid cell (10 km × 10 km). The proposed methodology consists of two
major phases. Phase 1 consists of the tree-based conditions applied over σ◦-values at both plot and
grid scales in which, at a given SAR date, each plot is evaluated for encountering or not an irrigation
event. Phase 2 is a post-processing phase where the irrigation events obtained in Phase 1 at each
plot were filtered using additional criteria based on optical data. In order to ensure near real-time
detection in phase 1, the absence or presence of an irrigation event at each plot for a given SAR time ti
is evaluated using only the SAR temporal series collected in previous dates (only before ti) at each plot.
However, the optical filter in phase 2 requires subsequent optical data one month after the SAR date.
The significance of each proposed filter (criteria) is discussed separately in the coming sections and
finally a practical overflow of the whole chain is presented.

3.2. σ◦ SAR Backscattering at Plot Scale

The proposed method is based on detecting the change in the σ0
P backscattering coefficient at

plot scale. When the surface soil moisture (SSM) increases between two consecutive SAR acquisitions,
σ0

P-value between these two dates increases. Since irrigation is an artificial application of water, it causes
obviously an increase in the SSM values. Thus, the SAR σ0

P-value could increase between two SAR
dates if an irrigation event occurred between these two SAR acquisitions [21,22]. It is good to mention
that only the VV polarization was considered in this study since VV is more sensitive to the soil water
content than VH which is more sensitive to the vegetation cover [32].

Not only could the increase in the σ0
P-values be an indicator of an irrigation event, but also the

stability or a slight decrease of σ0
P-values between two dates could be linked to an irrigation event

if the σ0
P-values attain high values. In fact, with no actions, such as irrigation, rainfall, soil work,

or vegetation development, the SAR signal between two near dates (at maximum 6 days) tends to
decrease, especially during spring and summer season, due to several water cycle parameters such as
the infiltration, evaporation and evapotranspiration that cause a decrease in the SSM values. Thus,
stabilization or slight decrease of σ0

P between time t1 and time t2 could be evidence of an additional
water supply if and only if the level of the SAR signal at t1 is already high due to a previous irrigation
or rainfall event occurring at time t1.

Since the method is based on detecting the change is σ0
P values, we propose to calculate, at each

SAR acquisition, the difference between the σ0
P value at this acquisition and σ0

P at the previous SAR
acquisition. We calculate therefore ∆VVP at plot scale as:

∆VVP = VVPti −VVPti−1 (1)

where VVPti is the σ0 in VV polarization at the present SAR date and VVPti−1 is the σ0 in VV polarization
at the first previous date.

Finally, for the σ0
P value, three main thresholds were determined for probable irrigation events.

First, if ∆VVP is less than or equals −0.5 dB (which correspond to a decrease in σ0
P-value more than 0.5

dB), then we assume that no chance of irrigation exists. If the ∆VVP is greater than or equal to 1 dB,
then a possible irrigation event could have existed. In addition, if the ∆VVP is between −0.5 dB and
1 dB (stabilization or slight decrease) then an irrigation event could have also existed. However, it is
necessary to add other criteria to confirm the possible irrigation event between date ti−1 and ti. These
additional criteria will be discussed in the coming sections.
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3.3. σ◦ SAR Backscattering at Grid Scale

The increase in the SSM values could not only be attributed to an irrigation event but also to
rainfall events that are the main contributor in the SSM variation. Then, a good separation between
rainfall events and irrigation events should be also performed. Actually, rainfall events and irrigation
events are both considered as water supplements and thus may have the same effect on the value of
∆VVP. For example, the threshold value of ∆VVP ≥ 1dB (presented in Section 3.2) could be a result
of a rainfall event and not only an irrigation event. Therefore, the ambiguity between rainfall and
irrigation is the principal factor to be resolved for a good detection of irrigation events. Thus, better
detection of irrigation events requires information about rainfall.

In this study, information about rainfall has been determined through the σ◦ value obtained at
grid scale (10 km × 10 km). We assume that if the bare soil plots with low vegetation cover within
the spatial extent of 10 km × 10 km show an increase of the SAR backscattering signal (increase in
SSM values) between two consecutive radar acquisitions, a rainfall event probably occurred. This
correlation between rainfall and σ0

G has been presented by Bazzi et al. [33] where they compared SSM
estimations at bare soil plots in 10 km grid scale to rainfall events at the same scale and concluded that
strong consistency exists between rainfall events and SSM values at 10 km grid scale. Moreover, Bazzi
et al. [12] used the SAR signal at grid scale conjointly with the SAR signal at plot scale to map irrigated
areas at plot scale. They reported that the use of σ0

G has remarkably improved the classification accuracy
of irrigated/non-irrigated plots by 15%.

The SAR backscattering coefficients at grid scale are obtained by averaging σ◦ values of all
bare soil pixels within each grid cell (10 km × 10 km). A mask for bare agricultural soil pixels has
been determined using first a land-cover map to delineate only agricultural areas (excluding urban,
forests . . . ) and then a threshold applied over the NDVI values obtained from S2 images. For this
reason, the land-cover map proposed by Inglada et al. [34] is used for the two French sites while the
agricultural plots of the SIGPAC data have been used for the Catalonia site. A maximum NDVI value
of 0.4 is fixed to extract bare soil pixels with low vegetation cover. Thus, at each SAR date, and for each
grid cell a σ0

G value is obtained describing the σ◦ backscattered from bare soil pixels of agricultural
areas only within each grid cell (10 km × 10 km).

At a given date, the change in SAR σ◦ at each 10 km cell could be obtained through the difference
of σ◦ value at the given date ti and the σ◦ at the first previous date ti−1

∆VVG = VVGti −VVGti−1 (2)

where VVGti is the σ0
G in VV polarization at the present SAR date and VVGti−1 is the σ0

G in VV
polarization at the first previous date.

Using a threshold value of ∆VVG, rainfall events could be determined and irrigation events
detected in Section 3.2 could be filtered. First, the grid based filters are only applied in the case where
∆VVP has a value more than or equal to −0.5 (Section 3.2) (probable irrigation event). We consider that
if the ∆VVG is greater than 1 dB then a rainfall event occurred and, therefore, there is no chance of
irrigation detection regardless of the value of ∆VVP. This filter helps reduce an important part of the
ambiguity between rainfall and irrigation. Next, we consider that if the value of ∆VVG is between
0.5 and 1 dB (low rainfall possibility), then a probability of irrigation can exist based on the value
of ∆VVP. In this case, if ∆VVP is less than 0.5 dB then irrigation did not take place (σ0

G at 10 km
bare soil plots have slightly increased more than that at the plot scale). On the other hand, if the
value of ∆VVP is greater than 0.5 dB, then we calculate the difference (∆) between ∆VVP and ∆VVG
(∆ = ∆VVP − ∆VVG). If the value of ∆ is greater than 1 dB, then irrigation has more chance than
rainfall and the point is assumed corresponding to an irrigation event. Inversely, if ∆ is less than
1 dB then no irrigation occurs. The indicator ∆ was also used to help confirm whether a point is an
irrigation event or not in the case of slight change in ∆VVP (−0.5 dB ≤ ∆VVP < 0.5 dB). When the
value of ∆VVP is between 0 and 0.5, the value of ∆ must be greater than or equal to 1.5 dB in order to
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consider the point as an irrigation event. Similarly, ∆ should be greater than or equal to 2 dB if the
value of ∆VVP is between −0.5 and 0.

Finally, we consider that if the value of ∆VVG is less than 0.5 dB, then irrigation could be detected
in case the value of ∆VVP respects certain criteria which will be detailed in Section 3.7.

3.4. Reducing Vegetation Contribution

Over vegetated areas, σ0
P is not only affected by the soil water content but also by the characteristics

of the vegetation cover. Indeed, for certain agricultural crops, the SAR backscattering signal is
attenuated by the existing vegetation cover [32,35]. For example, for crop types such as soya, sorghum
and sunflower the SAR backscattering signal between two dates could increase due to the development
of the vegetation cover. The direct effect of vegetation cover on the SAR signal should be also considered
to ensure accurate detection of irrigation events.

Recently, Nasrallah et al. [36] used a smoothed Gaussian filter on SAR temporal series in order to
describe the phenology stages of the vegetation growth over wheat crops. They demonstrated that
the smoothed Gaussian could be used to describe the vegetation contribution in the SAR temporal
series over wheat plots. Therefore, to minimize the effect of vegetation growth on the radar signal,
we propose to smooth the temporal series of the SAR backscattering signal. This smoothing gives
the general behavior of the vegetation contribution in the SAR signal. However, in order to ensure
the near real-time detection of irrigation, we propose to smooth the signal only using SAR dates
existing before the examined SAR date. This means that at each SAR date, a smoothing value σ0

smooth is
obtained by applying a Gaussian smooth on all points before this date (from t0 to ti). In this study,
the multidimensional Gaussian smooth has been used and the standard deviation for the used Gaussian
kernel was set equal to 4. Finally, we obtain the index S considered as a vegetation descriptor where:

S = σ0
Pti
− σ0

smooth (3)

Therefore, if σ0
Pti

is less than σ0
smooth (i.e., S < 0), then the point should not be further considered for

irrigation detection. This smoothing allows us to determine a vegetation indicator capable of reducing
the vegetation effects in the SAR signal (at each date) without losing possible irrigation events.

Another vegetation contribution filter has been suggested particularly for winter cereals usually
grown in the period between September and July of each year (wheat, barley and oats). In their
study over wheat crops, Nasrallah et al. [36] showed that the C-band SAR backscattering signal in VV
polarization decreases gradually between the germination phase occurring by the beginning of January
and the heading phase occurring between mid-March and mid-April. In the heading phase, the C-band
SAR backscattering signal attains extremely low values due to extreme vegetation attenuation (less
than −15 dB for incidence angle between 32◦ and 34◦). The σ0

P gradually increases then, between
mid-April and the end of May, when cereals move from the heading phase to the soft dough phase.
This increase in the C-band SAR signal is mainly due to the change in the phenology phase of the
cereals and is not linked to irrigation episodes. To reduce this ambiguity, we propose to eliminate
detected irrigation points between mid-April and the end of May if and only if σ0

P attains extremely
low value (less than −15 dB) between mid-March and mid-April. In this way, we can ensure that these
detected points are most probably a phenology change of cereals where σ0

P increases from extremely
low values between March and April (< −15 dB) to higher values in May. Practically, for any plot,
if a point is detected between mid-April and the end of May, we find the minimum of all σ0

P values
(denoted by MIN) acquired between mid-March and mid-April. If the MIN value is less than −15 dB
(most probably heading phase of cereals), then we eliminate the detected point.

3.5. Surface Soil Moisture Filter

As discussed in Section 3.2, irrigation activities obviously cause an increase in the SSM values at
plot scale. Thus, an important factor that can describe the presence or absence of irrigation events is
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the SSM value. We consider here that low soil moisture values are not correlated with an occurring
irrigation event since irrigation must increase the SSM values especially over plots with small vegetation
cover. However, the integration of any proposed SSM filter requires proper estimation of SSM values.
Recently, an algorithm using the neural network (NN) technique was developed by El Hajj et al. [32] to
estimate SSM values at plot scale over agricultural areas with vegetation cover. In their study, SSM
values were estimated with an accuracy of 5 vol.% (volumetric water content in percent = 0.05 cm3cm−3)
over agricultural areas which is considered a pleasant accuracy for any hydrological application at
plot scale. In addition, the NN developed by El Hajj et al. [32] has showed the most accurate SSM
estimations when evaluated against several SSM products such as the Soil Moisture and Ocean Salinity
(SMOS), Soil Moisture Active Passive (SMAP) [37] and Copernicus Surface Soil Moisture (C-SSM) [38].

In this study, the NN developed by El Hajj et al. [32] has been used to estimate SSM values at plot
scale. The NN requires as input data: SAR signal in VV polarization

(
σ0
)
, the SAR incidence angle (θ),

and an NDVI value. As a result, SSM values were estimated at each plot and for each SAR date denoted
by (SSMP). However, in another study, El Hajj et al. [39] recommend that the SSM estimation could be
limited in the presence of very dense vegetation cover due to the high vegetation attenuation on SAR
signal. Thus, SSMP has only been considered for NDVI values less than 0.5. Finally, an additional filter
is applied in which irrigation points have been restricted to SSM estimation ≥15 vol.% when the NDVI
value is less than 0.5. For NDVI values greater than 0.5, the SSM filter was not applied.

SSM values at plot scale were also used to help confirm whether a point is an irrigation point or not
in the case of slight change in ∆VVP (−0.5 dB ≤ ∆VVP ≤ 1 dB). As presented in Section 3.2, the stability
or slight decrease of the SAR signal at plot scale between ti and ti−1 could be interpreted as an irrigation
event if and only if the σ0 at time ti−1 already attains high values (due to irrigation or rainfall). To ensure
this situation, we say that at time ti−1, SSM estimation should be greater than or equals to 20 vol.% in
order to guarantee that humid soil conditions at time ti−1 have continued to time ti.

Over the grid scale, the SSM estimation for the σ0
G obtained for bare soil plots with low vegetation

cover (NDVI <0.4) at grid scale (Section 3.3) was also performed at each grid cell and for each SAR
date (SSMG). This estimation presents the surface water content over bare soil plots on the basin
scale. In fact, we assume that high soil moisture values at grid scale (10 km × 10 km) are more likely
to be linked to possible rainfall events rather than irrigation events (humid soil conditions at grid
scale). For this reason, we propose to eliminate all the points where the SSM estimation at grid scale
is greater than 20 vol.%. For the grid scale, the effect of vegetation attenuation on SSM estimations
(high NDVI values) does not exist since the σ0

G-values were only calculated for bare soil plots with low
vegetation cover.

3.6. Optical Normalized Differential Vegetation Index (NDVI) Filter

During the sowing or harvesting periods, the cropland plots usually encounter an increase in the
surface roughness due to soil work. In fact, the backscattered radar signal strongly depends on the
geometric characteristics such as the surface roughness that is usually expressed by the height root mean
square (Hrms). The Hrms is the standard deviation of surface height (root mean square) which specifies
the vertical scale of surface roughness. Several studies have discussed the sensitivity of the radar
backscattering signal to the surface roughness [40–42]. Baghdadi et al. [43] reported that a difference
of 4 dB could be observed between backscattering signal from smooth surface (Hrms = 0.5 cm) and
rough surfaces (Hrms = 3 cm). Therefore, between two near-date SAR acquisitions, an increase in the
surface roughness could cause an increase in the backscattering coefficient. This increase is related
to the change of the geometrical characteristics of the soil and not to the change of the water content
(irrigation or rainfall). To overcome this limitation, an additional optical filter is suggested in order to
better distinguish irrigation peaks from soil works such as sowing or harvesting.

Generally, irrigation activities must occur during a crop-growing cycle. This means that irrigation
must be followed by a development of the vegetation cycle. When croplands receive water, high
soil moisture causes better photosynthesis resulting in an increase in the leaf area index (LAI) values
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and therefore an increase in the NDVI values [6]. Therefore, we consider that an irrigation event
should be followed by the development of NDVI values. For this reason, a post processing filter is
proposed to eliminate some false detected irrigation events due to soil work. At each plot and for each
detected irrigation event (at a given SAR date), we first obtain the difference between the NDVI value
at the detected irrigation event and the next NDVI value of the next optical image (after 20 to 30 days
according to cloud limitation):

∆NDVI = NDVIti −NDVIti+(20 to 30 days) (4)

where NDVIti is the NDVI value at the current SAR date and NDVIti+(20 to 30 days) is the NDVI value
one month later.

The ∆NDVI value is considered as a vegetation indicator which helps in detecting whether an
increase of the NDVI values is observed or not (growing cycle) after the probable detected irrigation
event. The filter suggests that if the NDVIti value is less than 0.4 (bare soil conditions with small
vegetation cover) and ∆NDVI ≤ 0.1, then the point is a falsely detected irrigation point and is eliminated.
For NDVIti greater than 0.4, the filter is discarded because in the presence of vegetation the existence
of irrigation event is more probable. This filter ensures that if the bare soil condition is permanent and
a vegetation growth cycle does not exist (or was in a decreasing stage), then the detected event is most
likely to be a soil work point and not an irrigation point. However, this filter is a post-processing filter
that can be applied after obtaining another NDVI image after 20 to 30 days.

3.7. Global Overflow for Irrigation Event Detection

Figure 3 presents a detailed overflow of the proposed tree-based change detection methodology.
For a given plot and at a given SAR image acquired at time ti, seven main indicators could be extracted
for the plot:

• ∆VVP : Change in SAR signal at plot scale
• ∆VVG : Change in SAR signal at grid scale
• S: Smoothed vegetation descriptor S
• SSMP: SSM value at plot scale
• SSMG: SSM value at plot at grid scale containing this plot
• NDVIti: NDVI value at time ti

• ∆NDVI: Vegetation growth indicator

The chain starts with the ∆VVP value where a value less than −0.5 dB is considered as the
non-irrigation point. If the value of ∆VVP is greater than −0.5 dB, the smoothed vegetation descriptor S
is then checked for being positive and the point is considered as non-irrigation if S < 0. If S is positive,
the SSMP is then checked for the threshold value of 15 vol.% and the point is considered as non-irrigation
if the SSMP < 15 vol.% with NDVIti ≤ 0.5 (both conditions should occur simultaneously). When the
studied point arrives to pass by all the previous filters, the chance of having a water supplement
(irrigation or rainfall) increases, and thus the change of SAR signal at grid scale is required at this stage
in order to eliminate the irrigation-rainfall ambiguity. Filters applied at grid scale could be divided
into four main cases:

• Case i: If ∆VVG ≥ 1 dB then a rainfall event have occurred and the point is not an irrigation point.
• Case ii: If SSMG > 20 vol.% then a rainfall event probably occurred before and there is low chance

to have an irrigation event (humid soil conditions at basin scale).
• Case iii: If 0.5 ≤ ∆VVG ≤ 1 dB we check the value of ∆VVP for two cases:

Case iii.1: If ∆VVP ≤ 0.5 then no irrigation took place.
Case iii.2: If ∆VVP > 0.5 and ∆ (∆VVP − ∆VVG) ≥ 1 then it is considered as irrigation

point with high certainty.
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• Case iv: If ∆VVG ≤ 0.5 dB then we check the ∆VVP for four different cases:

Case iv.1: ∆VVP ≥ 1 dB then the point is an irrigation point with high certainty.
Case iv.2: 0.5 ≤ ∆VVP < 1 dB then the point is an irrigation point with medium certainty

if and only if SSMP ≥ 20 vol.% OR ∆ ≥ 1.5 dB.
Case iv.3: 0 ≤ ∆VVP < 0.5 dB then the point is an irrigation point with low certainty if

and only if SSMP ≥ 20 vol.% OR ∆ ≥ 2 dB.
Case iv.4: −0.5 ≤ ∆VVP < 0 dB then the point is an irrigation point with low certainty if

and only if SSMP ≥ 20 vol.% AND the previous point at ti−1 is a high certainty irrigation
point or a rainfall point (∆VVG ≥ 1 dB).
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Figure 3. Workflow overview using the tree-based classification for irrigation detection at plot scale.

A certainty indicator of irrigation (high, medium and low) is also associated for each detected
irrigation point. The high certainty irrigation points are associated for the points considered as
irrigation points from cases iii.2 and iv.1 (significant increase in ∆VVP). For the points of case iv.2 a
medium certainty is associated, while low certainty is considered for irrigation points detected from
cases iv.3 and iv.4.

The implementation of the proposed method in a near real-time scenario depends principally
on the delivery time of S1 images. S1 images are usually delivered by ESA in a “fast 24 h” delivery
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mode. This mode insures that the S1 image is available for download 24 h after the satellite acquisition.
Considering that the pre-processing of S1 images and applying the proposed method could be
automatically performed with minimum human involvement, the irrigation event could then be
detected about one hour after receiving the S1 images.

Finally, the post NDVI filter (Section 3.6) is applied for each detected irrigation point in order
to eliminate the ambiguity with soil work. When another NDVI image is acquired at ti+(20 to30 days),
the ∆NDVI is calculated. Then, for each detected irrgation event, if NDVIti < 0.4 and ∆NDVI ≤ 0.1,
then this irrigation event is eliminated. This NDVI filter is a long-term real-time scenario because it
requires obtaining a new NDVI value one month later. Therefore, this optical filter remains as a post
processing of the obtained irrigation points.

It is important to mention that the methodology is applied separately for the ascending (evening
overpass) and descending (morning overpass) SAR acquisitions. In fact, morning and evening
acquisitions could not be joined in one temporal series due to the presence of the diurnal variations
between the two acquisitions. The diurnal variation is a result of the difference in the vegetation water
content (VWC) between the morning and the evening. This difference in VWC causes high difference in
the radar backscattering signal over vegetated plots between the morning and the evening acquisitions.
Several studies have reported that σ0 in the morning overpass registers higher values than σ0 in the
evening overpass [44–46]. Therefore, it was suggested to investigate separately each SAR temporal
series acquired in the morning and evening.

4. Results

4.1. Grid Scale σ◦ Temporal Profile

Since irrigation and rainfall events are both considered a water supplement and have the same
effect on the SAR backscattering coefficients, it was proposed to minimize the irrigation-rainfall
ambiguity using the σ◦ values obtained at basin scale (10 km × 10 km). Figure 4 shows an example of
the temporal behavior of σ0

G SAR values in VV polarization obtained at a 10 km grid cell (red curve)
for Montpellier (Figure 4a), Tarbes (Figure 4b) and Catalonia (Figure 4c). Daily precipitation records
obtained from the Global Precipitation Mission (GPM) data are added to the figures (blue curve) to help
understand the consistency between the grid scale σ0

G values and the rainfall events. The green line
shows the SSM estimation at grid scale (for bare soil plots with low vegetation cover) at each SAR date
while the dotted black line shows the threshold value fixed for SSMG at 20 vol.%. Following a rainfall
event, the σ0

G value increases (more than 1 dB) due to important precipitation before the SAR acquisition
(black dashed circle) accompanied with high SSM estimations (more than 20 vol.%) indicating humid
soil conditions at 10 km scale. On the other hand, the absence of precipitation causes a decrease or
stability of σ◦ value at grid scale with low soil moisture values (less than 15 vol.%) indicating dry soil
conditions (yellow dashed circle). This consistency between rainfall, σ0

G and SSM estimations at grid
scale ensures that both σ0

G and SSM estimations at 10 km scale are a good representative for rainfall
events and, therefore, could be used to eliminate the uncertainty between rainfall and irrigation.
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Figure 4. Temporal evolution of Synthetic Aperture Radar (SAR) backscattering coefficient σ◦ in VV
polarization at 10 km grid scale (red curve) with surface soil moisture (SSM) estimation at 10 km grid
scale (green curve) and daily precipitation data from the Global Precipitation Mission (GPM) mission
(blue curve) for (a) Montpellier, (b) Tarbes and (c) Catalonia. Black dashed circle corresponds to existing
rainfall events while yellow circle shows the absence of rainfall.

4.2. Results over Montpellier

Figure 5 presents the results of the application of the proposed methodology (Phase 1 and 2)
over the three plots P1, P2 and P3 located in Montpellier, France using the ascending (morning) and
descending (evening) SAR images separately. Over Montpellier site, the morning acquisition is 36 h
prior to the evening acquisition.

Figure 5a,b show the morning and evening SAR acquisitions for P1 plot (maize), respectively.
The first detected irrigation point was on 17/07 (morning acquisition) and 18/07 (evening acquisition)
due to two irrigation episodes that took place on 16/07 and 18/07. Between 19/07and 31/07 no irrigation
occurred on the plot and no peaks where detected for two consecutive SAR acquisitions. Later, on
both 05/08 (morning) and 06/08 (evening), an irrigation peak was detected due to two irrigation
episode occurring on 03/08 and 04/08. In addition, two irrigation episodes that occurred on 04/09 and
05/09 appeared as an irrigation peak on the evening image of 06/09. However, the morning image
acquired on 04 September 2017 did not show any detected irrigation since the episodes occurred
after the SAR acquisition (SAR acquired at 06h00 while irrigation generally takes place after 09h00).
Moreover, an irrigation episode occurring on 11/09 was detected on the evening image acquired
on 12 September 2017. Two irrigation episodes occurring on 13/09 and 14/09 appeared on both the
morning and evening acquisitions on 14/09 and 15/09, respectively. By combining the irrigation events
detected from the morning and evening acquisition, 12 out of 15 possible irrigation episodes over
P1 were detected including 5 points with high certainty, 5 points considered as medium certainty
and 2 points with low certainty. However, it is important to mention that several irrigation episodes
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occurring between two consecutive SAR dates are considered as only one irrigation episode. For plot
P1 only one point with low certainty was falsely detected as irrigation event.
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Figure 5. Irrigation detection over P1 (a,b), P2 (c,d), and P3 (e,f) using the morning SAR acquisition
(a,c,e) and the evening SAR acquisition (b,d,f), in Montpellier, France. SAR VV signal at plot scale
in dashed black line and VV at grid scale in dashed pink line. Points with blue, green and red are
irrigation points detected on SAR signal at high, medium and low certainty respectively. The green line
represents the normalized differential vegetation index (NDVI). High, medium and low correspond
respectively to detected irrigation events with high, medium and low certainty.
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For the soya plot (P2), the results of the combined use of the morning (Figure 5c) and evening
(Figure 5d) acquisitions show that 11 irrigation episodes were detected out of 13 possible irrigation
episodes. Among the 11 detected irrigation points, eight points were with high certainty, two medium
and one low certainty point. Moreover, among the 92 SAR acquisitions (morning and evening), only
one false irrigation detection was obtained with low certainty. The first irrigation episode on 29/05 was
detected in the morning SAR image of 31/05 (Figure 5c). For the morning acquisition, the radar signal
then decreased between 31/05 and 06/06 due to the decrease in soil moisture but started to increase
between 06/06 and 24/06 without any rainfall or irrigation events. This increase in the σ0

P values
for three consecutive acquisitions was strongly correlated with the development of vegetation cover
(NDVI values increases sharply during this period). However, among these three SAR points, two
points were correctly not detected as irrigation points since they were filtered by the smoothed Gaussian
filter (S) that helped eliminate the effect of the vegetation development on σ0

P. Figure 6 explains the
effect of the smoothed-Gaussian filter over P2 plot of Montpellier where the σ0

smooth (red curve) is added
to the results obtained by Figure 5d to demonstrate the importance of the smoothed-Gaussian filter.
In Figure 6, the green dashed circle shows the three consecutive increase of σ0

P between 06 and 24 June
2017. However, for two out of these three points, the σ0

smooth curve is above σ0
P curve thus the calculated

S value is negative and these points were not detected as irrigation points.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 31 
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The sorghum plot (P3) encountered five irrigation episodes between 31 May 2017 and 10 August
2017 (Figure 5e,f). Using the proposed change detection method, five out of the five episodes were
correctly detected as irrigation events. The first irrigation episode was detected on the evening SAR
image (Figure 5f) of 01/06 due to an irrigation event occurring on the same date. Then, the 4 irrigation
episodes that occurred on 26/06, 07/10, 27/10 and 10/08 were detected with both acquisition modes
(ascending and descending). However, on this plot two false irrigation points were detected with
medium and low power.

Table 2 summarizes the results obtained on the three plots of Montpellier site. The total number
of irrigation events over the three plots was 48 events. However, at each plot, several irrigation events
occurring between two consecutive SAR dates are considered as only one irrigation event. We call
these events the possibly detectable irrigation events. For example, three irrigation events occurring
on 10/08, 11/08 and 13/08 on plot (P1) are considered as one irrigation event since the three events were
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followed by only one available SAR acquisition on 13 August 2017. Therefore, among the 48 irrigation
events occurring on the three plots, 33 events could be possibly distinguished by the acquired SAR
temporal series. This means that, 69% of the total number of irrigation events could be detected by
the available SAR temporal series. Out of 33 possibly detectable irrigation events over the three plots,
28 irrigation episodes have been correctly detected. This means that among the possible detectable
irrigation events 84.4% of these events are correctly detected. However, a total error of five falsely
detected irrigation events has been registered over the three plots. The falsely detected irrigation
points corresponds to the saturation of the radar signal caused by very well developed vegetation
cover in plots P1 (maize) and P3 (Sorghum).

Table 2. Irrigation events detected over three plots in Montpellier, South-east France.

Plot Number of
Irrigation Events

Possibly Detectable
Irrigation Events

Detected
Irrigation Events

False
Detection

P1 30 15 12 2
P2 13 13 11 1
P3 5 5 5 2

Total 48 33 28 5

4.3. Results over Catalonia

Over the Catalonia region, the huge database available allows us to investigate in depth the
performance of the proposed method. The method was applied not only over irrigated plots but
also over non-irrigated plots in order to analyze its capability to distinguish between irrigated and
non-irrigated fields. First, it is important to remember that Catalonia region is a semi-arid region with a
dry summer where most of the irrigation activities occur during the summer season (between May and
September). Figure 7 presents the temporal profile of σ0

P and σ0
G over the period between September

2017 and December 2018 (evening acquisitions) along with the irrigation points detected during this
period for an irrigated maize (Figure 7a) plot, irrigated alfalfa plot (Figure 7b), and non-irrigated wheat
plot (Figure 7c). The daily GPM precipitation data are also presented in the three figures (blue curve).
During the period between September 2017 and December 2018, 11 irrigation points were detected
on the maize plot whereas 12 irrigation points were detected on the alfalfa plot. In both irrigated
plots (Figure 7a,b), the irrigation points correspond to the dry summer period (between 25 April and
30 September). For example, 6 irrigation points were detected on the maize plot (Figure 7a) between
12 June 2018 and 15 August 2018. This is correlated with the existence of the maize vegetation cycle
in the summer season (Increasing NDVI values). The alfalfa plot (Figure 7b) shows also frequent
irrigation points detected between 12 June 2018 and 30 August 2018. For both maize and alfalfa
plots, the σ0

G between 01 June 2018 and 30 September 2018 shows stable low values indicating dry
conditions and the absence of rainfall events. On the other hand, the frequent change of the σ0

P in both
plots indicates that possible irrigation events have occurred. This increase of the σ0

P was detected as
irrigation events based on our proposed method.
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of the transition between the heading and soft dough phase of the wheat plot.

Over the non-irrigated wheat plot presented in Figure 7c, no irrigation points have been detected
for 82 SAR images (18 months). Such results support our criteria for detecting irrigation events and
eliminating ambiguities with rainfall or vegetation effects. Following a rainfall event both σ0

P and σ0
G

increase and then decrease following a dry period. The consistency between both σ0
P and σ0

G for the
non-irrigated plot during the whole period indicates that the plot did not receive any water supplement
other than rainfall events. Despite several frequent changes of the σ0

P over the complete temporal series
due to several rainfall events and vegetation change, the method was able to eliminate all possible
irrigation ambiguities and judge that the plot did not receive any irrigation event.
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An important point regarding the wheat plot in Figure 7c is the period between 19 April 2018
and 13 May 2018. During this period, the SAR backscattering signal increases gradually between
each two SAR dates (red dashed circle). This increase in the SAR signal is related to the transition
between the heading phase (minimum point on 19/04) and the soft dough phase (maximum point at
19/05). However, these points were eliminated using the proposed cereal phenology filter discussed in
Section 3.4.

The proposed method was applied over a wide area of Catalonia region including 159,850 plots
(123,428 non-irrigated and 36,423 irrigated plots) of different crop types. Despite the absence of
information about the exact irrigation dates over Catalonia, a quantitative analysis was performed by
comparing the results obtained by applying the method over irrigated and non-irrigated plots. Over
Catalonia, the morning acquisition was 12 h prior to the evening acquisition. Figure 8 presents the
histogram of the distribution of the number of events detected over irrigated and non-irrigated plots.
Figure 8a corresponds to the morning SAR acquisition and Figure 8b corresponds to the evening SAR
acquisition. The intersection between the evening and morning acquisitions is presented in Figure 8c.
The intersection means that at each SAR date the point is considered as irrigation point if it exists
within both the ascending and the descending acquisition modes (only 12 h difference between the two
acquisitions is approximately equal to same day). Finally, Figure 8d shows the result of the combined
use of both acquisitions. The combination between the results of the both acquisition modes means
that at a given SAR date, the point is considered irrigation point if it exists in either the ascending
or the descending acquisition modes. For morning acquisition mode (Figure 8a), the distribution
shows that 68.3% of the non-irrigated plots had no detected irrigation events for the period between
September 2017 and December 2018 (82 SAR images). Moreover, 20.3% of the non-irrigated plots
encountered only one detected event. Therefore, 88.6% of the non-irrigated plots have maximum
one detected irrigation point in the morning acquisition mode. The non-irrigated plots with 2 and
3 detected irrigation points represent only 6% and 2% respectively. On the other hand, only 12.1%
of the irrigated plots failed to register any irrigation event. Thus, 87.9% of the irrigated plots had
one and more detected irrigation points. The percentage then increases gradually where 54.9% of the
irrigated plots had between two and five detected irrigation points. In addition, 20.4% of the irrigated
plots encountered between five and 10 detected irrigation points. Similar results are obtained for
the evening acquisition (Figure 8b). For example, 58.2% of the non-irrigated plots had no detected
irrigation events while 25.1% had only one detected event. Thus, 83.3% of the non-irrigated plots
encountered a maximum of one detected point for evening acquisition mode. In contrast, only 9.1% of
the irrigated plots failed to gain any detected irrigation point and therefore 91.9.% of the irrigated plots
had one and more detected irrigation point in the evening acquisition mode. Moreover, 51.1% of the
irrigated plots had between two and five events and 27.3% of the irrigated plots had between six and
ten detected points.

The intersection between the morning and evening acquisitions modes (Figure 8c) shows that
90.2% of the non-irrigated plots have no detected peaks whereas 72.4% of the irrigated plots had one
or more detected irrigation peak. The combination of both acquisition modes (Figure 8d) increases the
number of detected irrigation points but leads to an accuracy of the same order of magnitude as in the
case of a separate use of the two SAR acquisition modes or in the case of the intersection of the two
acquisition modes. For non-irrigated plots, 45.9% of the plots had no detected points and 27.0% had
one detected points. The percentage decreases gradually to then reach 7% for three detected irrigation
points. Inversely, the irrigated plots with no detected irrigation points consist of only 6.8% while the
percentage of plots varies between 5% and 10% for irrigation points between 1 and 14 points.
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Figure 8. Distribution of the irrigation points detected over irrigated (blue) and non-irrigated
(orange) plots in Catalonia Spain for (a) morning SAR acquisition, (b) evening SAR acquisition,
(c) intersection between morning and evening acquisitions and (d) combination between morning and
evening acquisitions.

Figure 9 represents the distribution of the number of irrigation points detected over irrigated
plots in Catalonia, Spain as a function of months. For each month (including approximately five SAR
acquisitions at each acquisition mode), the number of irrigation peaks detected over all the irrigated
plots is calculated. While Figure 9a represents the distribution of irrigation points for the morning
acquisitions, Figure 9b shows this distribution for the evening acquisition. For the morning acquisition
mode (Figure 9a), the number of irrigation points reaches a low value in February 2018 (1040 points
~0.7%) and then starts to increase gradually between March 2018 and May 2018. A sharp increase
of the irrigation points exists between May 2018 (3827 ~3%) and June 2018 (21,787 ~16%) and then
continues to increase to reach a maximum value in July 2018 (25,380 ~19%). In August 2018, the number
of irrigation points slightly decreases to attain approximately 15%. Then the number of detected
irrigation points starts to decrease until reaching a minimum value in November 2018 (103 ~0.01%).
Similar behavior is registered in the evening acquisition (Figure 9b) where the number of irrigation
points reaches low value in February 2018 (2735 ~1%) and then increases until reaching its maximum
value in July 2018 (29,286 ~18%). A slight decrease is recorded in August 2018 (27,252 points ~16%).
The number of detected irrigation points then starts to decrease to reach a minimum value of 257
points ~0.01% in November 2018.
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As a result, Figure 9 shows that most of the detected irrigation points exist within the period
between March 2018 and September 2018. Indeed, 80.0% of the total detected points using the evening
acquisition mode (Figure 9b) exist within the period between 01 March 2018 and 30 September 2018.
Similarly, 74.5% of the total detected points exist within the same period for the morning acquisition
mode (Figure 9a). Only 12% of the irrigation points (in both morning and evening) correspond to the
period between November 2017 and February 2018. This low percentage mostly corresponds to the
false detection of irrigation events since irrigation rarely occurs over this period and rainfall events are
abundant. Therefore, the results show that most of the detected points using our proposed irrigation
detection method correspond to the dry season where irrigation mostly occurs in the region.

4.4. Classifying Irrigated and Non-Irrigated Plots over Catalonia

Based on the results obtained in Section 4.3, we propose to classify irrigated and non-irrigated plots
over the Catalonia site using the obtained distributions of detected irrigated points present in Figure 8.
Four different classifications were performed. The first classification was performed using the results
obtained from the morning SAR acquisitions (Figure 8a), and the second classification was executed
using the results of evening SAR acquisitions (Figure 8b). A third classification was undertaken using
the intersection between the morning and evening results (Figure 8c), and finally a fourth classification
was executed using the combination of the morning and evening results (Figure 8d). As stated in 4.4,
the intersection means that at each SAR date, a point is considered an irrigation point if it exists in both
SAR acquisition modes while the combination means that the point is considered as irrigation point
if it exists in either one of the two modes. For the morning and the evening classification scenarios,
we suppose that a plot is considered irrigated if our method identifies two and more irrigation points
within the complete SAR temporal series (morning or evening). For the intersection classification
scenario, we consider that a plot is an irrigated plot if the intersection between the morning and
the evening results gives one and more irrigation points. Finally, for the combined classification
we consider that a plot is irrigated if the combination of the morning and the evening results gives
three and more irrigation points. For each of the four classifications, a confusion matrix is built and
Table 3 reports the accuracy metrics by means of the overall accuracy, weighted F-measure, and the
F-Measure at each class (irrigated, non-irrigated). The overall accuracy is a standard metric used for
remote-sensing applications. The weighted F-measure corresponds to the harmonic mean affected
by the number of samples. Since the number of non-irrigated plots is bigger than the irrigated plots,
the weighted F-measure is well suited to evaluate the performance of the classification [47].
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Table 3. The values of the overall accuracy and F-measure obtained for classification of irrigated and
non-irrigated plots using the detected irrigation points for four different scenarios.

Scenario Condition to be
Irrigated Class F-Measure Weighted

F-Measure
Overall

Accuracy

SAR Morning Two points and more Non-irrigated 0.90
86.1% 85.7%Irrigated 0.71

SAR Evening Two points and more Non-irrigated 0.88
83.4% 82.5%Irrigated 0.68

Intersection Morning
and Evening

One point and more Non-irrigated 0.90
86.0% 85.9%Irrigated 0.70

Combined Morning
and Evening

Three points and more Non-irrigated 0.89
84.7% 85.4%Irrigated 0.72

The highest overall accuracy (85.9%) was recorded for the intersection scenario with a weighted
F-measure of 86.0%. The F-score of the irrigated class in the intersection scenario reaches 0.70 and that
for the non-irrigated class reaches 0.90. On the other hand, the lowest overall accuracy was recorded
for the evening SAR acquisition (82.5%) accompanied with the lowest weighted F-measure (83.4%).
The combined scenario shows the highest accuracy for the irrigated class (F-measure = 0.72) with an
overall classification accuracy of 85.4%. Generally, the F-measure of each class was nearly the same
between the four scenarios. In fact, the F-measure varies between 0.68 and 0.72 for the irrigated class,
and varies between 0.88 and 0.90 for the non-irrigated class.

The four proposed classification scenarios were re-established using only the detected irrigation
events between April and September 2018 which corresponded to the irrigation period in Catalonia.
Figure 10 shows a comparison between the accuracy metrics previously obtained when using all
the detected irrigation events (between September 2017 and December 2018) and that obtained
when using only irrigation events between April 2018 and September 2018. For the morning and
evening classification scenarios, the results show that the overall accuracy increased by 2.8% and
4.8%, respectively, when considering only detected irrigation events between April and September
(Figure 10a). The F-measure of the irrigated class increased by 2.2% for the morning scenario and
significantly increased by 5.0% for the evening classification (Figure 10b). For the intersection scenario,
the obtained results remained nearly the same for the four accuracy metrics. Moreover, in the combined
classification scenario, the overall accuracy increased by 4.0% (Figure 10a) where the F-measure of the
irrigated class increased by 4.5% (Figure 10b). The F-measure of the non-irrigated class (Figure 10c)
also increased for the four different scenarios. Finally, the weighted F-measure also increased by
2.0%, 4.0% and 3.4% for the morning, evening and the combined classification scenarios, respectively
(Figure 10d). Therefore, a priori information about the irrigation period can help reduce the uncertainty
in the proposed model for better irrigation detection. This priori information helps limiting the size of
the studied temporal series and thus reduces the chance of detecting additional false irrigation events.
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4.5. Results over Tarbes 

The proposed method was applied over irrigated plots in Tarbes, south-west France. Figure 11a 
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0  in the morning acquisition mode for an irrigated maize plot with the 

irrigation points detected using the proposed change detection method. While Figure 11a shows the 

complete series between 01 March and 30 November 2017, Figure 11b represents the period where 
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Figure 10. Comparison between accuracy metrics obtained for classification of irrigated and
non-irrigated plots using all the detected irrigation events (red bar) and the detected irrigation
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4.5. Results over Tarbes

The proposed method was applied over irrigated plots in Tarbes, south-west France. Figure 11a
represents the σ0

P and σ0
G in the morning acquisition mode for an irrigated maize plot with the irrigation

points detected using the proposed change detection method. While Figure 11a shows the complete
series between 01 March and 30 November 2017, Figure 11b represents the period where the irrigation
points were detected. However, irrigation dates were not available over this site so a qualitative
analysis was performed to show the performance of the method. During the period between 01 March
2017 and the end of June 2017 (Figure 11a), the σ0

P and σ0
G followed the same behavior for almost all

the dates. Following a rainfall event both curves increased and then decreased following a period
without rainfall. This consistency could be related to the absence of any additional water supplement
on the plot scale. However, between March and mid-May, the NDVI values were low (less than 0.2)
indicating bare soil conditions. This also supports the possibility that no irrigation had occurred for
this period. The NDVI then started to increase showing a vegetation cycle between May and October.
Using the proposed method for detecting irrigation events, four irrigation points were detected over
this plot (Figure 11b). In general, all these irrigation points corresponded to an important increase
of σ0

P accompanied with absence of rainfall events as shown by the GPM data (blue curve) and the
σ0

G-values at grid scale (pink curve). For example, an important cumulative rainfall of approximately
40 mm three days before the SAR image acquired on 28 June 2017 caused σ0

G to increase by 2.5 dB. Six
days later, no rainfall events were registered and the σ0

G decreased by 1.5 dB. For the same period, σ0
P

increased by 1 dB. This point was the first irrigation point detected on the plot. Similarly, between
10/07 and 16/07, σ0

G decreased by 2.1 dB due to the absence of precipitation while σ0
P increased by 1.1

dB indicating that a water supplement could have occurred. The absence of precipitation for 12 days
between 22/07 and 04/08 caused σ0

G to decrease gradually. However, the SAR image acquired on 04/08
showed an increase of the SAR signal at plot scale which was evidence of an irrigation event occurring.
Likewise, between 15/08 and 21/08 the σ0

P increased by 1.5 dB indicating the presence of irrigation
event along with a stability of low σ0

G (~−11.5 dB) indicating the absence of any rainfall events. After
the fourth detected point on 21/08, the NDVI started to decrease. Usually during this phase irrigation
events rarely occur. After 02/09, the σ◦ values at both plot and grid scale regained their consistent
behavior indicating the absence of irrigation. Finally, it is important to mention that the summer season
in Tarbes is humid and encountered several rainfall events.
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Figure 11. Irrigation events detection over a reference irrigated maize plot in Tarbes, France.
(a) Complete temporal series between March and November 2017; (b) irrigation events detected
between 29 May and 21 August 2017.

Figure 12 presents the histogram of the distribution of the number of events detected over irrigated
plots in Tarbes for morning acquisition (Figure 12a), evening acquisition (Figure 12b), intersection
between morning and evening acquisitions (Figure 12c) and the combination of both acquisitions
(Figure 12d). It is important to remember that the intersection means that the detected points are
considered irrigation events if they exist within the morning and the evening modes while the
combination means that the points are considered irrigation events if they exist in either the morning
or the evening acquisition modes. Figure 12a shows that using the morning acquisition, 91% of the
irrigated plots has one or more detected irrigation events and 75% of the plots have two and more
detected irrigation events. Figure 12b shows that fewer points are detected in the evening acquisition
than the morning acquisition where only 50% of the plots have one and more irrigation events.
In Figure 12c, the intersection shows that with an interval of 36 h between both acquisitions, only 38%
of the irrigation events were commonly detected within both acquisition modes. Finally, the combined
use of the morning and the evening acquisitions in Figure 12d shows that 97% of the irrigated plots had
and more detected irrigation events. Moreover, 90% of the irrigated plots had two and more detected
irrigation events and 65% of the plots had three and more irrigation events. This indicates that the
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combined use of the morning and the evening acquisitions helps detect more irrigation events than
using only one S1 overpass each 6 days. Figure 12d also shows that the maximum percentage of plots
was registered with three irrigation events (29.7%) and the percentage then decreased as the number
of detected irrigation events increase (four events and more). The low number of detected irrigation
events in Tarbes, compared to those obtained over Catalonia, was expected since Tarbes is a humid
region and the frequency of irrigation is less than that in the arid or semi-arid regions. Moreover,
the abundance of rainfall events during the summer season could restrict the possibility of detecting
all the possible irrigation events.
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5. Discussion

5.1. Change Detecion in σ◦ SAR Backscattering

In this study, a new methodology is presented for detecting irrigation events at plot scale using
the change detection in the SAR backscattering signal. The first important fact is that the change of
the surface soil moisture due to irrigation events (artificial application of water) between two SAR
dates may cause an increase in the SAR backscattering coefficient between these two dates. However,
this assumption remains limited with the changes in SAR backscattering signal due to a rainfall event
or vegetation development. Therefore, the separation between the changes in SAR backscattering
signal due to irrigation events from similar changes, which could be caused by rainfall or vegetation
development, was challenging.
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To remove the uncertainty with rainfall events, the method proposes using the SAR backscattering
signal at basin scale (10 km × 10 km) obtained from bare soil plots with low vegetation cover
as a descriptor of rainfall events. The assumption stipulates that if the mean SAR signal within
10 km × 10 km grid cell increased between two consecutive dates then a rainfall event took place and
thus irrigation, if it had occurred, could not be detected. This dependency between rainfall and σ0

G
was presented in Figure 4. For this reason, we judge that any increase in the SAR signal at 10 km grid
scale by more than 1 dB is linked to rainfall events. In addition, the surface soil moisture estimation
performed at grid scale (SSMG) was used to enhance the detection of rainfall events. Thus, a threshold
of 20 vol.% for SSMG was proposed to describe humid soil conditions at basin scale which is probably
linked to a rainfall event that occurred couple of days before the SAR acquisition. The combination of
these two conditions at grid scale allowed a good separation between rainfall and irrigation episodes
occurring at each SAR acquisition.

The second main contributor in the SAR backscattering signal at plot scale was the development
of the vegetation cover. This development could cause an increase in the SAR backscattering signal
at plot scale without any change in the surface soil moisture content and thus without any irrigation
or rainfall events. In this study, a descriptor of the vegetation growth is suggested. This descriptor
(S) is a Gaussian-smoothing filter applied to the SAR temporal series. The S values allow describing
the vegetation growth pattern at the plot scale and thus permit the separation of irrigation events
from vegetation growth events. This contribution of the smoothed-Gaussian is shown in Figure 6. For
the soya plot (P2) of Figure 6, the vegetation descriptor (S) helped eliminate two points considered
as vegetation development points. Another vegetation development filter was proposed for cereal
plots in order to remove the increase in the SAR backscattering signal due to the transition between
the heading and the soft dough phenology phases. The importance of this filter was demonstrated
in Figure 7c for a non-irrigated winter wheat plot. However, the date limits present in this filter
(mid-March until May) could be adjusted for other geographical contexts in order to follow the cereal
growth cycle where cereals could be cultivated in other months.

5.2. Effect of NDVI Optical Filter

Throughout the study, an optical post-processing filter has been suggested to ameliorate the
detection of irrigation events and remove the ambiguity between the increase in the SAR backscattering
signal due to irrigation events and soil work. The role of the NDVI filter is to insure that a vegetation
growth cycle truly exists within or after the detected irrigation point. As presented in Section 3.6,
the NDVI optical filter suggests that if the NDVIti (NDVI value at a detected irrigation event) is less
than 0.4 and ∆NDVI ≤ 0.1 then the point is a falsely detected irrigation point, and is further eliminated.
For NDVIti greater than 0.4, the filter was no longer applied because the vegetation cover is already
developed (NDVI > 0.4) and the existence of irrigation event is more probable.

To assess the importance of this NDVI optical filter, we obtain first the results over Catalonia
without applying the NDVI optical filter. Then we apply the NDVI optical filter using two threshold
values on NDVIti accompanied with the criterion ∆NDVI ≤ 0.1. The filter was first applied using
NDVIti ≤ 0.2 and then applied using NDVIti ≤ 0.3. The results obtained previously with NDVIti ≤ 0.4
were also used in this comparative analysis. For each case, the threshold of ∆NDVI was kept equal
to 0.1. To present the effect of this NDVI optical filter, we intended to monitor the change in the
percentage of plots that did not encounter any irrigation event for both irrigated and non-irrigated
plots (0 detected irrigation events). The class with no detected irrigation events was chosen for this
analysis since it describes the capability of discriminating between irrigated and non-irrigated plots.
Figure 13 presents the evolution of the percentage of the plots that did not register any irrigation event
as a function of the value of NDVIti used in the optical filter for both morning (Figure 13a) and evening
(Figure 13b) acquisition modes.
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For the morning acquisition mode, Figure 13a shows that when the NDVI filter is not applied
only 29% of the non-irrigated plots have no detected irrigation events. When adding the NDVI filter
using NDVIti ≤ 0.2 (∆NDVI ≤ 0.1), this percentage increases to reach 44%. The optical filter applied
at NDVIti ≤ 0.3 increases the percentage of non-irrigated plots with no detected irrigation events to
reach 59%. Finally, using the NDVI optical filter at NDVIti ≤ 0.4, 68% of the non-irrigated plots had no
detected irrigation events. Beyond 0.4, the filter was no longer applied since vegetation already exists
and the occurrence of an irrigation event was more probable than soil work. For irrigated plots in
morning acquisition (Figure 13a), the percentage of irrigated plots with no detected irrigation events
was 4% when no NDVI filter was added and slightly increased to 12% as the NDVI optical filter
with NDVIti ≤ 0.4 was used. Therefore, when applying the NDVI filter using NDVIti ≤ 0.4 in the
morning acquisition mode, the percentage of the non-irrigated plots with no detected irrigation events
significantly increased by 39% (68–29%) compared to the percentage obtained when no NDVI filter
was used. The percentage of the irrigated plots with no detected irrigation events increased only by 8%
(12% minus 4%) compared to that obtained when no NDVI filter was used.

For the evening acquisition mode (Figure 13b) the results show that the percentage of non-irrigated
plots with no detected events increased from 22% when no filter was applied to reach 35%, 49% and
finally 58% when the NDVIti ≤ 0.2, NDVIti ≤ 0.3 and NDVIti ≤ 0.4 were used respectively. For the
irrigated plots in evening acquisition, the percentage increased from 3% when no filter was applied to
reach 9% when NDVI optical filter was applied at NDVIti ≤ 0.4. Therefore, when applying the NDVI
filter using NDVIti ≤ 0.4 in the evening acquisition mode, the percentage of the non-irrigated plots
with no detected irrigation events increased by 36% (58–22%) compared to the percentage obtained
when no NDVI filter was applied. On the other hand, the percentage of the irrigated plots with no
detected irrigation events increased only by 6% (9–3%) compared to that obtained when the filter was
not applied.

The significant increase in the percentage of non-irrigated plots with no detected peaks, between
the case where NDVI filter was not applied and NDVI filter was applied at NDVIti ≤ 0.4, encouraged
the use of the post-processing optical filter despite of the loss of 8% and 6% in the irrigated plots for
morning and evening acquisitions, respectively.

5.3. Strengths, Limitations and Future Directions

The results of the study demonstrate that irrigation events could be detected using the Sentinel-1
satellite data with 6 days temporal resolution. Using the proposed method, the spatial distribution of
the plots that encountered an irrigation event could be obtained at each available SAR acquisition.
Currently, the Sentinel-1 satellite is the only operational satellite that provides SAR data with high
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revisit time (6 days). However, this revisit time could still affect the detection of irrigation events.
The first limitation of the proposed method is the effect of the time lag between the irrigation episode
and the satellite passage. In fact, the detection of irrigation can become difficult if the irrigation event
takes place more than three days before the SAR acquisition. Hajj et al. [21] showed that irrigation could
be detected if the irrigation took place three days and less before the radar acquisition. In their study
using X-band SAR data, they showed that more than three days after the irrigation event, the surface
soil moisture could attain the same value as that before the irrigation due to evaporation. Thus, a SAR
acquisition more than three days after the irrigation event could not show any change in the surface
soil moisture and the irrigation could not be detected. However, an analysis of the detected and
non-detected irrigation events over Montpellier site using the C-band SAR data reveals that detection
of irrigation events is not necessarily limited to the three-day time lag. For example, some detected
irrigation points were found to be occurring four days before the SAR acquisition whereas few points
were not detected even two days after the SAR acquisition. Thus, additional information such as the
type of irrigation, the quantity of water, the evaporation rate and the plant water needs could be used
to confirm the presence or absence of such irrigation events.

In general, to overcome the limitation of the time lag between the SAR date and irrigation date,
a dense SAR temporal series is required. Indeed, within the overlapping area of the different orbits of
the Sentinel-1, four images (two morning and two evening images) could be obtained each 6 days.
Thus for some sites, we could obtain up to 20 images each month (10 morning and 10 evening images)
which could help easily detect all the irrigation events. This configuration mainly depends on the
surface area of the studied site in order to be covered by the overlapping area of different Sentinel-1
overpasses. The dense temporal series of SAR acquisitions (20 images per month) could also help
increase the number of possibly detectable irrigation events. The number of possibly detected irrigation
events mainly depends on the availability of the SAR images. As shown in the results over Montpellier
(Section 4.2), 69% of the irrigation events could be possibly detected by SAR data using the available
SAR configuration over the study area (10 images each month). Thus, as the number of SAR images
increases, the chance of detecting all the existing irrigation events increases.

Another limitation for detecting irrigation events could be the existence of a very well developed
vegetation cover. In fact, the value of ∆VVP over high vegetation cover could be lower than that for
bare soil [18]. However, this difference in ∆VVP between bare soil and vegetated soil is a difficult
aspect to quantify but can cause some uncertainty.

The strength of the method resides in the near real-time detection of irrigation episodes. Despite
the post-processing step required in the NDVI optical filter, the method could still be operationally
applied in near real-time. Unlike other approaches that may require the complete temporal series to
perform irrigation mapping or detection, the proposed method could be a near real time application
for irrigation detection.

The classification results obtained in Section 4.4 show that the proposed method could be a
competing method for classifying irrigated plots versus machine-learning approaches that require an
extensive training database in order to obtain good classification results. For example, Gao et al. [11]
and Bazzi et al. [12] used machine learning models such as the random forest and the convolutional
neural network with S1 temporal series to classify irrigated/non-irrigated plots in Catalonia, Spain.
Both studies achieved an overall accuracy of 82% and 90%, respectively. Using our approach, we were
able to separate irrigated and non-irrigated plots with an overall accuracy of 85.9% over the same
study site (4.4).

Generally, machine-learning models used for classification tasks usually depend on the studied
sites and the studied period of the year. In our case, the proposed method was tested over three
different study sites with different geographical and climatic properties. This indicates that the
proposed method is not site-dependent. Since no specific site calibration is required in the proposed
approach, the proposed method is thus capable of providing a non-supervised tool for monitoring
irrigation activities at plot scale. This reflects the strength of the proposed method against the transfer
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of the machine-learning models from one site to the other. However, the threshold values used could
still be modified to obtain optimum results over another study sites. The change of the thresholds,
if needed, does not require extensive dataset from in situ observations for irrigated plots.

By analyzing the number of obtained irrigation points on each field (as for Section 4.3), our proposed
method could be used to generate labelled samples of irrigated/non-irrigated plots. This means that
the proposed method could be used to create a training/validation dataset, over any study site, which
could be then used in machine-learning models such as random forest or deep-learning approaches.
Our future work will concentrate on merging our proposed method with machine learning methods
to obtain a semi-supervised classification model in which the training/validation data will first be
selected using the proposed approach in this study, and then a machine-learning model will be built to
perform further irrigation classification. In this case, the proposed method could replace the terrain
campaigns usually done for collecting rich set of labelled samples in order to perform machine-learning
classification approaches

6. Conclusions

To deal with the aspect of managing water resources in the agricultural sector, this paper proposes
a new approach for detecting irrigation events at plot scale in a near real-time scenario. The proposed
method is a decision tree-based approach for detecting irrigation events using the change detection in
the S1 SAR backscattering coefficients at plot scale. Several filters were applied in order to remove the
ambiguity between irrigation events and rainfall, vegetation development and soil surface roughness.
A thresholds-based method was proposed to detect irrigation events at each available S1 SAR date and
for each agricultural plot mainly using the backscattering S1 SAR signal at plot and at grid scale (10
km × 10 km). Finally, a post-processing filter based on the NDVI value was integrated to ameliorate
the detection of irrigation events.

To ensure the transferability and the possible operational application of the proposed approach,
three study sites were examined in this study (Montpellier, Catalonia and Tarbes) with two different
climatic properties. In terms of climate, both Montpellier and Catalonia are similar (Mediterranean)
with dry summer season whereas Tarbes is a humid region with frequent rainfalls in the summer
season. Results showed, first, that the proposed method was capable of detecting 84.8% of the irrigation
events occurring at three plots encountering 33 irrigation events in Montpellier. Then, an analysis
performed over the semi-arid region in Catalonia revealed that the proposed method was capable of
classifying irrigated and non-irrigated plots with an overall accuracy of 85.9%. Finally, the analysis
performed over irrigated plots in Tarbes revealed that our proposed method is able to detect irrigation
events even in the presence of frequent rainfall events in the summer season where 90% of irrigated
plots were detected with two and more irrigation events.

Our irrigation events detection method opens the way toward building new semi-supervised
approaches for irrigated area mapping at plot scale. Since several machine-learning models require an
extensive dataset with costly terrain measurements, this method could be used to create a dataset of
irrigated/non-irrigated labelled samples in order to be used in a machine-learning model that could be
more efficient. Our future work will concentrate on combining this new method with a supervised
classification model to obtain a semi-supervised model for irrigation mapping. This combination can
permit the transfer of machine-learning classification models over several regions to perform irrigation
mapping at plot scale.
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