
The impact of overexploitation of groundwater resources on the resilience of agricultural farms in semi-arid zones Nsiri N^{1,2,3} Zaatra R¹, Kleftodimos G¹, Belhouchette H¹, Drogué S^{2,3}

¹CIHEAM-IAMM Mediterranean Agronomic Institute of Montpellier, 34093 Montpellier, France

²Montpellier Institut Agro, ³UMR MoISA

Methodology

Our approach, to analyze the resilience of farmers, focuses on the household level where the main decision-making is taking place.

In order to study the resilence of agricultural farms in the Souss Massa region (Morroco), we used DAHBSIM bio-economic model (Komarek et al. 2017). It is based on mathematical programming methods and maximizes the expected utility of household income.

Topic of research

- Water resources in Morocco are rather well known, but limited, irregular, and fragile.
- The expansion of irrigated agricultural land has increased the groundwater resulting the in use, of overexploitation local aquifers.
- Water scarcity is expected to have a negative impact food production and on threaten the resilience of the local agricultural system

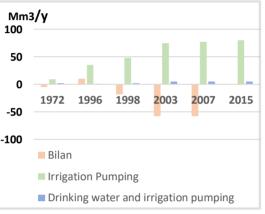


Figure 1 : Evolution of groundwater withdrawal and water balance

Objective

The main objective of the research is to evaluate the impact of groundwater overexploitation on the resilience of agricultural households in Morocco.

Case study :

- South of the Atlas mountains
- Semi-arid to arid climate
- Average rainfall of 200 to 250 mm/y
- Quasi-absence of surface water
- Importance of groundwater resources
- Water consuming activities

We identified 3 farm-types in the area; intensive production system based mainly on vegetables, semi-intensive cereal monoculture households and one perennial crops.

Results

Table 1 : Farm income and pumping costs

	Indicator	Scenario of reference (Sc_REF) 2020	Business As Usual (BAU) (2035)	Average annual cost of degradation	Cost of degradation Sc_REF - BAU
Water cost(dh/ m3)	26.57	61.93	40.85	43.7	6,536,000,000
Pumping costs (dh/m)	1827.53	2268.65	388.01	441.12	-
Farm incom (dh/farm)	34243.8 7	26871.14	3686.36	7372.73	112,433,980

Table 1 : Income variation with precipitation after simulation

Intensification level	Сгор	Income (Dicrease or stable Dh/ha)
Intensive (Type 1)	Vegetables	- 2777,95
Semi-intensive(Type 2)	Cereal monoculture	- 980
Extensive (Type 3)	Perennial	+2050

References : Bouchaou et al., 2011/ Hssaisoune et al., 2020/ Komarek et al., 2017 / El Ansari et al., 2020/ Malki et al., 2017