
Crop Protection 176 (2024) 106522

Available online 14 November 2023
0261-2194/© 2023 Published by Elsevier Ltd.

Transforming weed management in sustainable agriculture with artificial 
intelligence: A systematic literature review towards weed identification and 
deep learning 

Marios Vasileiou a,*, Leonidas Sotirios Kyrgiakos a, Christina Kleisiari a, Georgios Kleftodimos b,c, 
George Vlontzos a, Hatem Belhouchette d,e, Panos M. Pardalos f 

a Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytoko, 38446, Volos, Greece 
b CIHEAM-IAMM (Institut Agronomique Méditerranéen de Montpellier), 34090 Montpellier, France 
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A B S T R A C T   

In the face of increasing agricultural demands and environmental concerns, the effective management of weeds 
presents a pressing challenge in modern agriculture. Weeds not only compete with crops for resources but also 
pose threats to food safety and agricultural sustainability through the indiscriminate use of herbicides, which can 
lead to environmental contamination and herbicide-resistant weed populations. Artificial Intelligence (AI) has 
ushered in a paradigm shift in agriculture, particularly in the domain of weed management. AI’s utilization in 
this domain extends beyond mere innovation, offering precise and eco-friendly solutions for the identification 
and control of weeds, thereby addressing critical agricultural challenges. This article aims to examine the 
application of AI in weed management in the context of weed detection and the increasing impact of deep 
learning techniques in the agricultural sector. Through an assessment of research articles, this study identifies 
critical factors influencing the adoption and implementation of AI in weed management. These criteria 
encompass factors of AI adoption (food safety, increased effectiveness, and eco-friendliness through herbicides 
reduction), AI implementation factors (capture technology, training datasets, AI models, and outcomes and 
accuracy), ancillary technologies (IoT, UAV, field robots, and herbicides), and the related impact of AI methods 
adoption (economic, social, technological, and environmental). Of the 5821 documents found, 99 full-text ar-
ticles were assessed, and 68 were included in this study. The review highlights AI’s role in enhancing food safety 
by reducing herbicide residues, increasing effectiveness in weed control strategies, and promoting eco- 
friendliness through judicious herbicide use. It underscores the importance of capture technology, training 
datasets, AI models, and accuracy metrics in AI implementation, emphasizing their synergy in revolutionizing 
weed management practices. Ancillary technologies, such as IoT, UAVs, field robots, and AI-enhanced herbicides, 
complement AI’s capabilities, offering holistic and data-driven approaches to weed control. Additionally, the 
adoption of AI methods influences economic, social, technological, and environmental dimensions of agriculture. 
Last but not least, digital literacy emerges as a crucial enabler, empowering stakeholders to navigate AI tech-
nologies effectively and contribute to the sustainable transformation of weed management practices in 
agriculture.   
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1. Introduction 

Agriculture, the cornerstone of global food production, grapples 
incessantly with the persistent menace of weed infestations. The pres-
ence of weeds presents a substantial risk to agricultural productivity, 
since they engage in resource competition with crops for essential ele-
ments such as water, nutrients, light, and space (Tshewang et al., 2016). 
Consequently, this interference hampers the growth and development of 
cultivated plants. Weeds also disrupt the uniform growth of crops, 
leading to uneven crop maturity and complicating harvesting processes 
(Yu et al., 2019b). Beyond the realm of resource competition, some weed 
species harbor pests and diseases, serving as reservoirs for agricultural 
pathogens that can devastate crops (Ahmad Loti et al., 2021). Moreover, 
the existence of weeds can impede the efficacy of mechanical and 
manual farming practices, necessitating increased labor and resources 
for weed control (Molinari et al., 2020). Subsequently, the economic 
impact of weeds is substantial, encompassing crop yield losses, increased 
production costs, and the potential for lower-quality harvests. According 
to the findings of Adeux et al. (2019), a research study conducted over a 
period of three years, highlight that majority of the weed communities 
resulted in substantial yield losses in unweeded zones, ranging from 
19% to 56%. In essence, the uncontrolled spread of weeds exerts a 
profound and adverse influence on agricultural sustainability, produc-
tivity, and overall economic viability. 

Traditionally, the practice of weed management has predominantly 
relied on the use of herbicides, which has raised significant apprehen-
sions regarding the long-term viability of the environment and the safety 
of food production. Herbicides are chemical compounds designed to 
control and eradicate weeds and have significantly contributed to the 
enhancement of crop yields and the amelioration of the deleterious 
consequences of weed competition by specifically targeting and eradi-
cating weed species, minimizing labor demands, and enhancing crop 
development (Modi et al., 2023). Nevertheless, the utilization of her-
bicides has elicited noteworthy apprehensions, encompassing both 
environmental and food safety considerations. The indiscriminate 
application of herbicides may result in herbicide-resistant weed pop-
ulations, necessitating more potent and environmentally harmful her-
bicides (Chu et al., 2022). Moreover, herbicide residues can persist in 
soil and water systems, potentially affecting non-target plants, aquatic 
life, raw food products, and human health. In light of these challenges, 
there is a growing imperative to embrace more precise and eco-friendly 
approaches to weed management, which is precisely where Artificial 
Intelligence (AI) techniques step in. 

Effective weed management strategies, bolstered by AI and innova-
tive technologies, are indispensable in mitigating these deleterious ef-
fects and ensuring the prosperity of agriculture. The utilization of AI 
technology in weed management endeavors to address the ecological 
consequences associated with herbicides by enhancing their efficacy, 
diminishing the quantity of chemicals employed, and limiting the 
presence of residues (Hakme et al., 2020). This strategy ultimately fos-
ters a more sustainable and conscientious method for controlling weeds 
in agricultural practices. AI methods comprise a diverse range of tech-
nologies, including computer vision, machine learning, and deep 
learning, each possessing distinct capabilities in tackling the intricate 
challenges posed by weed proliferation (P. Wang et al., 2022). Deep 
Learning (DL), a subfield of machine learning (ML) distinguished by the 
use of Artificial Neural Networks (ANN), is currently positioned at the 
forefront of advancements in weed identification (Nasiri et al., 2022). Its 
capacity to extract nuanced features from data and identify complicated 
patterns has significantly enhanced the precision and effectiveness of 
weed detection (Ghatrehsamani et al., 2023). Deep learning models, 
which have been trained on extensive datasets, demonstrate an unpar-
alleled capacity to accurately differentiate between crops and weeds, 
even in complex and dynamic agricultural environments (Rai et al., 
2023). Furthermore, DL has made substantial contributions to various 
aspects of precision agriculture, encompassing identification and 

counting of crop plants (Rai and Flores, 2021), detection of diseases in 
crops (Liu and Wang, 2021), identification of crop stress (Butte et al., 
2021), detection of crop rows (Bah et al., 2020), fruit harvesting (Onishi 
et al., 2019), detection and grading of fruits for freshness (Ismail and 
Malik, 2022), and site-specific weed management (Liu et al., 2021). 

The economic ramifications of AI adoption in weed management are 
profound. By precisely identifying and targeting weeds, AI contributes 
to resource optimization, most notably in herbicide application and, 
specifically, land and labor (Kirtan Jha et al., 2019). More precisely, it is 
essential to consider land as a finite resource due to population 
augmentation (Ramankutty et al., 2018) and soil degradation (Kopittke 
et al., 2019), underscoring the need to enhance productivity on current 
agricultural land as a matter of utmost importance. Moreover, the 
concept of labor is undergoing transformation as the ability to engage in 
continuous work under progressively harsher circumstances expands. 
(Gallardo and Sauer, 2018). This attribute plays a significant role in 
bolstering the resilience of agricultural systems. Along with that, Ace-
moglu and Restrepo (2019) indicate that the change to Agriculture 5.0 
will have an impact on in-field human labor, resulting in the creation of 
new employment to support AI activities. 

The adoption of AI technology in agriculture is still in its nascent 
stages and poses a complex challenge, for which the existing literature 
has not yet provided a comprehensive overview. Therefore, it is crucial 
to build a clearly defined research framework, and researchers are 
actively contributing to the existing body of knowledge by conducting 
surveys to improve understanding of this topic. This study uses SLR as a 
methodological framework to investigate and consolidate previous 
research completed on AI in agriculture with respect to weed identifi-
cation and deep learning. Table 1 displays comparable contributions in 
the domain of AI in weed management. 

In essence, the confluence of AI and weed management represents a 
huge shift in agricultural paradigms. This Systematic Literature Review 
(SLR) embarks on an exploratory journey that delves into the intricacies 
of AI in weed management, unveiling the transformative potential it 
holds for agriculture and the broader ecosystem. As we navigate through 
these intricacies, we encounter not only innovations but also multifac-
eted challenges that underscore the intricate interplay between tech-
nology, economics, society, and the environment. In this symphony of 
change, AI, tightly intertwined with weed management, emerges not 
only as a harbinger of transformation but as a dedicated steward of 
progress, nurturing the seeds of a greener, more sustainable future for 
agriculture and the world. 

Subsequent sections encompass a description of the materials and 
methods utilized, an analysis of the findings of the SLR, a comprehensive 
discussion of AI in weed management and final conclusions drawn from 
the study. 

2. Materials and methods 

When researching a certain research issue, subject, or phenomenon, 
it is common practice to perform a systematic literature review in order 
to identify, assess, and analyze all pertinent studies (Snyder, 2019). This 
method is seeing an increase in popularity due to its adherence to a 
comprehensive and rigorous protocol, which facilitates the assessment 
of relevant research that is accessible and pertaining to a specific topic 
matter (Xiao and Watson, 2019). Furthermore, this approach facilitates 
the identification of research gaps within current studies, hence 
providing opportunities for future research (Kitchenham and Charters, 
2007). 

The present study employs the SLR, following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines (Kyrgiakos et al., 2023; Page et al., 2021b), as a methodo-
logical framework to investigate and consolidate prior research under-
taken on the application of artificial intelligence in weed management, 
with a specific focus on weed identification and deep learning in agri-
culture. This framework includes four phases: (1) identification, (2) 
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screening, (3) eligibility, and (4) inclusion. The search was conducted 
utilizing the Scopus and Web of Science (WoS) databases, combining the 
terms “weed management”, and “artificial intelligence”. This yielded a 
total of 5821 outcomes, with 5713 from Scopus and 108 from WoS. To 
ascertain the final survey terms, the aforementioned data were exported 
and thereafter inputted into the VOSViewer software (Waltman and 
Ecken, 2010). The results of the software are depicted in Fig. 1, which 
showcases three delineated clusters of keywords, with a minimum 
threshold of 260. The keyword that exhibits the highest occurrences is 
“deep learning”, with a number of 815. Additionally, as depicted in 
Fig. 1, the keyword “deep learning” is highly related to the agricultural 
keywords. Thus, in order to improve the results of the present study, this 
term was added to the survey as an alternative term for “artificial in-
telligence”, as it is in a different cluster. 

Given the updated terms, the total number of outcomes is 7,641, with 
7434 from Scopus and 207 from WoS. Considering this search focuses on 
full articles, a considerable number of articles were irrelevant to the 
scope of this study. Consequently, the search was limited to examining 

the article’s title, abstract, and keywords, resulting in a total of 319 
articles for further evaluation (Scopus = 209 + WoS = 110). In addition, 
all the search parameters were defined to include publications from 
2016 onwards, revealing a notable exponential growth trend up until 
2022, as depicted in Fig. 2. 

Subsequently, by narrowing the search to only journal articles and 
conference papers and discarding duplicates (62) and articles written in 
languages other than English (4), 99 articles remained for full-text 
assessment. This study incorporated a total of 68 articles identified 
through full-text assessment, including 5 articles using snowballing 
(Wohlin, 2014). Fig. 3 provides an overview of the SLR method, as 
outlined in accordance with the PRISMA guidelines (Page et al., 2021a). 

The search was performed on August 24, 2023, encompassing arti-
cles published within the year 2023 up until that date. The final query 
code is given in Appendix A. 

3. Results 

The objective of this report is to augment the comprehension of AI 
applications in weed management with a focus on weed identification 
and deep learning implementation. During the assessment process of the 
selected articles, six thematic foci were identified, which focus on 
different aspects of AI implementation in weed management. These 
areas include the general information of the articles, field information, 
factors of AI system adoption, AI implementation, ancillary technologies 
utilized, and the of AI methods adoption, as shown in Fig. 4. 

These Thematic Foci are broken down into criteria that were used to 
classify the articles. Table 2 presents these criteria along with their 
corresponding descriptions. 

3.1. General information 

The General Information category entails four main criteria, 
encompassing (i) the publication year, (ii) the publishing company, (iii) 
the source type, and (iv) the document type. The majority of the docu-
ments assessed are journal articles (62), with a smaller number of high- 
quality conference papers (6) that present a comprehensive work. The 
analysis mostly incorporated publications from the year 2022 (27), 
followed by those published in 2023 (20), as depicted in Fig. 5. 

Considering the information pertaining to the publishing company, 
Fig. 6 presents a visual representation of the quantity of documents 
attributed to each publisher in the present study, categorized according 
to their source type. The publishers that had fewer than three articles in 
this study were grouped into the category labeled as "Other". Elsevier 
emerges as the publisher with the highest number of journal articles in 
this study (22), while most of the conference papers (4) are published 
from IEEE. 

Furthermore, the classification of the articles was conducted ac-
cording to their respective content types, encompassing frameworks 
(31), case studies (20), and algorithm (17) (Fig. 7). 

3.2. Field information 

In the context of AI-enabled weed management, field information 
serves as the foundational bedrock upon which precise, effective, and 
sustainable weed control strategies are constructed. Field information 
encompasses critical criteria such as the country of operation, the weed 
species at hand, and the crop type under cultivation. Each of these 
criteria carries profound significance in shaping AI-driven weed man-
agement practices. 

The geographical context of weed management is of paramount 
importance, as different regions and countries are characterized by 
unique agroclimatic conditions, weed species prevalence, and agricul-
tural practices. AI models, specifically those developed for the purpose 
of identifying and managing weeds, necessitate meticulous calibration 
to effectively address the specific challenges and conditions within a 

Table 1 
List of recent literature reviews.  

Source Methodology Contributions No. of 
Articles 
analyzed 

Rai et al. (2023) Systematic 
Literature 
Review  

• Present an overview of 
advanced technology 
used for precise weed 
removal.  

• Provide an overview of 
DL models and the 
existing methodologies 
utilized for the detection 
of weeds.  

• Present limitations of DL 
pertaining to each sensing 
categories 

60 

Ghatrehsamani 
et al. (2023) 

Qualitative 
Literature 
Review  

• Explore the application of 
АІ methods for accurate 
and sustainable weed 
control strategies.  

• Provides an overview of 
the management of 
herbicide-resistant 
weeds, including the 
problems and 
opportunities.  

• Discussion of innovative 
technologies for the 
management of 
herbicide-resistant 
weeds. 

N/A 

Sachithra and 
Subhashini 
(2023) 

Systematic 
Literature 
Review  

• Develop a comprehensive 
comprehension of the AI 
technologies now utilized 
in the agriculture sector.  

• Examine diverse AI 
initiatives to accomplish 
sustainability goals for 
growth.  

• Analyze how existing and 
developing technologies 
help farms grow 
sustainably. 

115 

Hassan et al. 
(2021) 

Systematic 
Literature 
Review  

• Explores various control 
mechanisms employed 
for automating 
agricultural processes.  

• Offers a comprehensive 
overview of the 
operational process and 
revenue of a smart 
agriculture system. 

65  
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given country (Roslim et al., 2021). The selection of appropriate AI al-
gorithms, the design of training datasets, and the calibration of weed 
detection models are influenced by the country factor. Moreover, it fa-
cilitates the incorporation of AI models into specific agricultural set-
tings, ensuring that weed management approaches are in accordance 
with local limitations and preferences. Considering the importance of 
the country of origin within the context of AI-enabled weed manage-
ment, it is essential to take into consideration the countries that are 
documented in the publications indicated (Fig. 8). Within the scope of 

this analysis, China (17) emerges as the nation to which most articles are 
referring to perform experiments, followed by the USA (12). 

In addition, the precise identification of weed species plays a crucial 
role in weed management as weed species can vary widely in their 
growth habits, resistance to herbicides, morphological characteristics, 
and competitive abilities. In order to provide targeted control measures, 
it is important for AI models to possess the capability to discern between 
different kinds of weeds. The precise identification of weed species plays 
a crucial role in determining the most suitable herbicides and 

Fig. 1. Relationship of the keywords regarding “weed management”, and “artificial intelligence”.  

Fig. 2. Number of publications per year pertaining to the three terms in the final search query.  
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management techniques, hence enhancing the efficient allocation of 
resources and minimizing excessive herbicide use (Thompson et al., 
2010). Moreover, through the process of mapping and assessing the 
prevalence of weed species, AI can contribute to long-term weed man-
agement strategies, hence facilitating the advancement of cropping 
systems that are both more robust and environmentally sustainable 
(Valente et al., 2022). Table B1 in Appendix B quotes the various weed 

species identified in each article. 
Furthermore, the crop type under cultivation directly impacts weed 

management decisions, as different crops exhibit varying tolerances to 
weed competition and herbicide applications. In order to ensure the 
preservation of crop health and productivity, it is important for AI sys-
tems to possess a comprehensive understanding of the particular crop 
under consideration. This knowledge is crucial for the accurate identi-
fication of the weeds (Saqib et al., 2023). Moreover, the implementation 
of AI-based weed management techniques allows for the customization 
of methods according to the specific growth stages and vulnerability of 
the cultivated crop, hence augmenting the synergy between AI and crop 
cultivation (Roslim et al., 2021). The application of AI across various 
crops exemplifies the adaptable nature of this technology in the realm of 
weed management. The crops included in this study found in the articles 
reviewed are: wheat (Triticum aestivum), cotton (Gossypium), sugar beet 
(Beta vulgaris), rice (Oryza sativa), corn (Zea mays), lettuce (Lactuca 
sativa), soybean (Glycine max), potato (Solanum tuberosum), sugarcane 
(Saccharum officinarum L.), bell pepper (Capsicum annuum), bok choy 
(Brassica rapa), barley (Hordeum vulgare), wild blueberry (Vaccinium 
angustifolium), carrot (Daucus carota), chinee apple (Ziziphus mauritiana), 
pineapple (Ananas comosus), sesame (Sesamum indicum L.), and peanut 
(Arachis hypogaea); as can be seen in Fig. 9. In addition, some articles 
referred to identification of multiple crops, such as in Peteinatos et al. 
(2020) in which they identify Maize, sunflower, and potatoes. Similarly, 
there are articles that they do not specify the crop type because they only 
identify weeds. The crop that has been referred to the most is wheat. 

In summary, field information, encompassing country-specific con-
ditions, weed species diversity, and crop type considerations, stands as a 
cornerstone in the edifice of AI-enabled weed management. These 
criteria serve as guidelines for the development of AI models tailored to 
regional contexts, empower precise weed species identification, and 
facilitate the selection of crop-specific weed control strategies. 

3.3. Factors of AI system adoption 

The integration of AI into the domain of weed management signifies 

Fig. 3. Funnel diagram of SLR methodology using PRISMA guidelines.  

Fig. 4. SLR Thematic Foci of criteria.  
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a transformative juncture in agricultural practices, entailed by factors 
shaping the adoption of AI systems. This thematic Foci delves into three 
pivotal criteria: Food safety, Enhanced Effectiveness, and Herbicides 
Reduction - Eco-friendliness in which distinctive facets of AI-driven 
weed management emerge, from its implications for human health 
and environmental sustainability to its capacity for resource optimiza-
tion and crop yield augmentation. Table B1 in Appendix B quotes the 
articles reviewed in this study and classifies them based on these three 
factors, while Fig. 10 quantifies these articles referring the three factors. 

Table 2 
Summary of the criteria assessed throughout the SLR implementation.  

Category Criteria Description 

1. General 
information 

Year The publication year of the 
article. 

Publisher The name of the Publisher 
(counted only those that appeared 
at least in 3 articles). 

Source type Journal or Conference paper. 
Document type Framework, Case study, or 

Algorithm. 

2. Field information Country Country of origin of the 
experiments conducted or images 
acquired. 

Weed species Weed species detected in each 
study. 

Crop Type Crop type of the application. 

3. Factors of AI system 
adoption 

Food safety Herbicide practices for weed 
control sometimes lead to water 
and soil pollution and pesticide 
residues that can affect food 
safety. 

Increase in efficacy Conventional methods for weed 
control often result in high 
production costs or herbicide 
resistance. There are articles 
trying to increase the 
effectiveness of weed 
management by utilizing AI 
techniques. 

Herbicide reduction 
– eco-friendliness 

Efforts are undertaken to 
minimize or eradicate the 
utilization of herbicides. 

4. AI implementation Functionality Purpose of using artificial 
intelligence in weed 
management. 

Capture technology The selection of the imaging 
equipment holds significance due 
to the distinct characteristics 
exhibited by each device. Some 
articles utilize open-source 
datasets to train and test their 
algorithms. 

Training dataset The number of images used for 
training the AI model is recorded. 

AI model The AI model used in each study is 
recorded as it offers distinct 
characteristics. 

Outcomes and 
Accuracy 

Each study presents different 
results depending on the AI model 
used and the dataset. These 
outcomes are recorded. 

5. Ancillary 
Technologies used 

IoT The incorporation of IoT devices 
and cameras facilitates the 
monitoring of the weeds. 

UAVs UAVs and drones are utilized in 
order to capture images of the 
field. A multitude of articles are 
incorporating aerial robotics for 
image acquisition and pesticide 
spraying. 

Field robots Terrestrial vehicles are employed 
to enhance and automate the 
process of weed removal, either 
through mechanical means or via 
pesticide spraying. 

Herbicides Herbicides are chemical 
substances employed for the 
purpose of managing or 
regulating weed growth. 

6. Related impact of AI 
methods adoption 

Economic The article takes into 
consideration the economic 
impact of the AI adoption.  

Table 2 (continued ) 

Category Criteria Description 

Social The article discusses the effects 
that it presents with regards to 
customers or society in general. 

Technological The article contributes to the 
technological progress of AI in 
weed management. 

Environmental The article takes into 
consideration the environmental 
aspect of AI utilization in weed 
management.  

Fig. 5. Year-wise and source-type publications included in this analysis.  

Fig. 6. Number of articles per publisher, categorized according to their 
respective source types. 

Fig. 7. Articles classified by their respective content type.  
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3.3.1. Food safety 
Ensuring food safety is an indisputable imperative in the agricultural 

sector, considering its direct and significant impact on human health. 
Traditional weed control practices have conventionally placed signifi-
cant reliance on the use of chemical herbicides to address weed in-
festations, inadvertently giving rise to a range of concerns related to 
food safety (Dang et al., 2023). The application of herbicides, while 
effective in weed suppression, is not without repercussions. Residues 
from herbicides can accumulate on crops and in the surrounding soil, 
potentially leading to the contamination of food products and, therefore, 
presenting a tangible risk to consumers and the environment (Subeesh 
et al., 2022). In 2023, a study by the Environmental Working Group 
found that nearly 75% of conventionally grown fresh food available in 
the USA is found to contain traces of potentially hazardous pesticides, 
aligning with similar studies which have shown that herbicide residues 
are present in a variety of food products (Environmental Working 
Group, 2023). In addition, in the European Food Safety Authority found 

that glyphosate residues were present in a variety of food products, 
including cereals, bread, and pasta, underling that glyphosate is a 
probable human carcinogen (European Food Safety Authority (EFSA), 
2015). Similarly, a study by the Canadian Food Inspection Agency found 
that herbicide residues were detected in over 10% of fruit and vegetable 
samples tested, highlighting that Minimum Residue Levels (MRLs) of 
herbicides exceeded safety limits in some samples (Canadian Food In-
spection Agency, 2020). These findings raise concerns about the po-
tential health risks associated with exposure to herbicide residues in 
food. While the World Health Organization (WHO) has stated that the 
levels of herbicide residues typically found in food are not a significant 
health risk (World Health Organization, 2022), some scientists and 
public health experts have expressed concern about the potential 
long-term effects of exposure to herbicide residues, such as cancer and 
reproductive problems (Asghar and Malik, 2016). 

The advent of AI technologies has reformed the landscape of weed 
management, as AI systems exhibit a high degree of accuracy in weed 
identification and classification. The high level of precision exhibited by 
AI-driven weed management solutions allows for accurate differentia-
tion between crops and weeds and can empower farmers to administer 
herbicides with unprecedented precision, targeting only the weeds (Jin 
et al., 2022a). The implementation of AI technologies not only reduces 
the likelihood of herbicide residue accumulation, but also substantially 
decreases the potential for unintentional contamination of food prod-
ucts. In this SLR, 19% (13) of the studies highlight this factor for 
adoption (Fig. 10). 

3.3.2. Increase in efficacy 
The pursuit of agricultural productivity hinges upon the continuous 

improvement of weed management practices. As weeds persistently 
challenge crop yields and agricultural efficiency, there arises an 
imperative to enhance the effectiveness of weed control measures 
(Gerhards et al., 2022). The optimization of weed management practices 
plays a crucial role in enhancing agricultural productivity and mini-
mizing economic losses. Conventional weed control measures often 
confront challenges such as imprecise application, labor-intensive 
manual labor, and delayed reactions to weed outbreaks (Jiang et al., 
2023). These shortcomings underscore the compelling need for inno-
vative approaches that amplify the effectiveness of weed management 
strategies. AI and its inherent capabilities to rapidly and precisely detect 
weeds within agricultural fields play a crucial role in improving the 
effectiveness of weed management strategies. 

Two fundamental aspects highlight the enhanced effectiveness 
brought about by AI in weed management: precision and timeliness 
(Mishra and Gautam, 2021). AI-driven systems exhibit an unparalleled 
level of precision in distinguishing between crops and weeds, enabling 
the specific targeting of herbicides, reducing unintended harm to crops, 
and promoting resource conservation (Movedi et al., 2022). Further-
more, AI can operate in real-time or near-real-time, perpetually moni-
toring fields for weed presence. Timely identification of weeds allows for 
immediate intervention, thereby minimizing the timeframe in which 
weeds can proliferate and compete with agricultural crops, aligning with 
the dynamic nature of agriculture and contributing significantly to the 
overall effectiveness of weed management (Thanh Le et al., 2021). In 
this SLR, 76% (52) of the studies highlight this factor for adoption 
(Fig. 10). 

3.3.3. Herbicide reduction – eco-friendliness 
In light of the simultaneous imperatives of maintaining crop pro-

ductivity and promoting environmental sustainability, the pursuit of 
ecologically sound methods for weed control has gained significant 
prominence within agriculture. The conventional use of herbicides in 
agriculture has historically played a central role in weed management, 
and although herbicides have demonstrated efficacy in the reduction of 
weeds, their extensive utilization has resulted in unexpected environ-
mental repercussions (Duke and Dayan, 2022). The leaching of 

Fig. 8. Countries in which experimentations take place in this SLR.  

Fig. 9. Crops applied AI-enabled weed management. (* The article investigates 
more than one crops, ** The article refers crop in general). 

Fig. 10. Quantity of articles referring the three factors.  
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herbicides into soil and water has the potential to impact non-target 
organisms, contaminate water bodies, and facilitate the emergence of 
herbicide-resistant weed strains (Xia et al., 2022). The ecological foot-
print of herbicides necessitates a paradigm shift towards more envi-
ronmentally sustainable practices. 

AI emerges as a catalyst for herbicide reduction and eco-friendliness 
in weed management. AI-based solutions demonstrate exceptional per-
formance in accurately and promptly identifying weeds at an early stage 
and empower producers to specifically target and address the presence 
of weeds, consequently reducing or eliminating the reliance on herbi-
cides (Johansson et al., 2007). There are studies highlighting the 
importance of reducing the herbicide utilization that can be found in 
Table B1 in Appendix B. In this SLR, 62% (42) of the studies highlight 
this factor for adoption (Fig. 10). 

3.4. AI implementation 

The integration of AI into weed management practices signifies a 
transformative stride in contemporary agriculture. This technology not 
only offers the potential for improved efficiency and effectiveness in 
weed control but also aligns with the emerging priorities of sustain-
ability and precision agriculture. This thematic group of criteria pertains 
to the system that is employed in weed management. These criteria 
encompass (i) the functionality of AI, (ii) the capture technology, the 
vital bridge connecting the physical agricultural environment to the 
digital realm of AI, (iii) the training dataset, the foundation upon which 
AI models learn and adapt, (iv) the AI model, the intricate algorithmic 
brains that drive decision-making, and (v) outcomes and accuracy, the 
ultimate litmus test of AI’s practical value in weed management. 
Table B2 in Appendix B quotes the articles reviewed in this study and 
provides information on AI implementation regarding the criteria. 

3.4.1. Functionality 
AI systems are specifically developed to address certain challenges. 

In this study, the criterion “Functionality” serves as a precursor to the AI 
application. These applications encompass weed detection, weed and 
crop identification, weed mapping, or weed removal. The functionality 
factor signifies the ability of AI systems to address real-world challenges, 
provide real-time insights, offer decision support, and integrate with 
precision agriculture practices. 

3.4.2. Capture technology 
Capture technology is recognized as a fundamental element that 

serves as the basis for the effectiveness and precision of solutions driven 
by AI. Capture technology encompasses the suite of hardware and sen-
sors employed to gather data from the agricultural environment. It 
constitutes an essential interface between the physical world of crops 
and weeds and the digital realm of AI. The quality, type, and precision of 
capture technology directly influence the richness and relevance of data 
available for AI systems. 

The availability of high-quality data is crucial for the successful 
implementation of weed management strategies. It facilitates data 
acquisition by employing various sensors, cameras, and other data- 
gathering devices. These include mobile phone cameras, drone cam-
eras, professional cameras, Lidars, and hyperspectral systems. The 
quality and reliability of this data are paramount, as AI models heavily 
rely on it for accurate decision-making. In this study, the capture tech-
nologies used for image acquisition for the training process in each study 
were classified in four categories: Phone camera, UAV camera, camera, 
and open-source dataset. Fig. 11 illustrates the distribution of articles 
across different categories, while cameras are the most used means of 
capture technology. 

3.4.3. Training dataset 
In conjunction with capture technology, the availability of high- 

quality training datasets is essential for AI model development. 

Training datasets, comprising labeled images and data, enable AI models 
to learn and make accurate weed identification and management de-
cisions (Bochtis et al., 2022b). Training datasets serve as the founda-
tional building blocks upon which AI models learn and develop the 
capability to make informed decisions regarding weed identification and 
management (Sudars et al., 2020). The quality, diversity, and repre-
sentativeness of these datasets profoundly influence the accuracy and 
reliability of AI-driven weed management systems (Olsen et al., 2019). 

The size and volume of training datasets can significantly impact the 
performance of AI models. Larger datasets, generally, lead to more 
robust and accurate models. Nevertheless, the process of gathering and 
labeling vast datasets can be a demanding task. The utilization of labeled 
data, wherein each image or data point is annotated with explicit in-
formation indicating the presence or absence of a weed, is an essential 
requirement in the context of supervised machine learning (Shorewala 
et al., 2021). It enables AI models to establish correlations between 
distinct patterns and characteristics and needs to be as precise as 
possible, as it is of utmost importance in the training process. 

3.4.4. AI model 
The core of AI integration in weed management is around a complex 

network of algorithms, neural networks, and computational intelli-
gence. AI models play a crucial role in facilitating decision-making 
processes within the realm of weed management (Bochtis et al., 
2022c). These models integrate extensive quantities of data, encom-
passing collected photos, sensor inputs, and environmental character-
istics, and condense this knowledge into practical and useful insights (K 
Jha et al., 2019). The essence of AI models in this study lies in their 
ability to identify and classify weeds accurately, enabling informed and 
timely interventions. 

AI models used in weed management predominantly fall into the 
domains of deep learning for computer vision. Deep learning is a subset 
of machine learning that focuses on the utilization of artificial neural 
networks, with a specific emphasis on convolutional neural networks 
(CNNs) for image-related tasks (Ofori and Omar, 2021). These CNNs 
demonstrate exceptional performance in the field of image recognition, 
rendering them very suitable for the task of weed identification. The AI 
models used in the reviewed articles vary and are quoted in Table B2 in 
Appendix B. These include, the You look only Once (YOLO) in many 
versions, Single-shot MultiBox Detector (SSD), EfficientDet, RetinaNet, 
CenterNet, Faster Region-based Convolutional Neural Network (RCNN), 
Region-based Fully Convolutional Network (RFCN), ResNet101, Dar-
kNet53, MobileNet, VGG, DenseNet, ShuffleNet, MNASNet, EfficientNet, 
Alexnet, GoogLeNet, InceptionV3, Xception, VGGNet, DetectNet, CBAM, 
and U-net. 

3.4.5. Outcomes and accuracy 
The accuracy of AI models is a key determinant of their practical 

utility in weed management. Performance metrics such as precision, 
recall, F1-score, and area under the receiver operating characteristic 
curve (AUC-ROC) are commonly used to assess model accuracy. The 
accuracy of AI models in weed management is not merely a statistical 

Fig. 11. Categorization of image acquisition technology for the 
training process. 
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measure but a practical imperative. The precision of weed management 
interventions relies heavily on the accurate identification and classifi-
cation of weeds and high accuracy could ensure that herbicides are 
applied judiciously, targeting weeds while sparing crops, thus mini-
mizing economic losses and reducing environmental impact (Hussain 
et al., 2020). 

Accuracy, though fundamental, is not the sole performance metric 
for AI models in weed management. A more nuanced evaluation in-
volves metrics such as precision, recall, and the F1-score (Ong et al., 
2019). Precision is a metric that measures the ratio of accurately 
recognized weeds to the total number of identified instances, hence 
decreasing the risk of false positives. Recall, on the other hand, quan-
tifies the ratio of accurately detected weeds out of the total number of 
existing weeds, thereby addressing the concern of false negatives. 
Furthermore, the F1-score serves as a means of achieving equilibrium 
between precision and recall, providing a comprehensive metric that 
encompasses the total performance of a model. In addition to precision, 
recall, and the F1-score, AI practitioners often employ Receiver Oper-
ating Characteristic (ROC) curves and the Area Under the ROC curve 
(AU-ROC) to assess model performance (Valente et al., 2022). ROC 
curves plot the true positive rate against the false positive rate, 
providing insights into a model’s discriminatory ability across different 
decision thresholds, while AUC-ROC quantifies the overall discrimina-
tive power of the model, with higher values signifying better perfor-
mance. Last but not least are mean Average Precision (mAP) value and 
Intersection over Union (IoU) metrics. mAP is a comprehensive metric 
used to evaluate the model’s ability to accurately and effectively identify 
and categorize objects present in a picture or dataset, while IoU is a 
metric used to evaluate the accuracy of object localization in tasks like 
image segmentation and object detection (Saqib et al., 2023; Xu et al., 
2023). Subsequently, Mean Intersection over Union (MioU) is also 
referred in the literature, which is the mean value across all classes or 
category of objects in an image or a dataset (Wang et al., 2020). 

3.5. Ancillary technologies used 

The integration of AI in the agricultural sector has brought forth a 
new era of accuracy and productivity in the realm of weed management 
(Bochtis et al., 2022a). Yet, the efficacy of AI-driven weed management 
extends beyond the capacity of AI alone. It is further supported by the 
seamless integration of ancillary technologies that work in concert with 
AI, elevating the precision and scope of weed control strategies. 
Collectively, these technologies synergistically enhance data acquisi-
tion, monitoring, decision-making, and intervention, shaping a holistic 
approach to weed management in modern agriculture. In the context of 
this SLR, four predominant technologies are identified to be utilized in 
conjunction with AI: IoT, UAVs, field robots, and herbicides. Table B2 in 
Appendix B quotes the articles reviewed in this study and classifies them 
based on these technologies, while Fig. 12 quantifies these articles 
referring to the technologies used. 

3.5.1. IoT 
The convergence of IoT and AI has ushered in a new era of precision 

in weed management. IoT devices, including sensors, remote cameras, 
and data loggers, play a crucial role in the acquisition of real-time 
environmental data, facilitating the ability of AI systems to make well- 
informed decisions (Kulkarni et al., 2020; Tanveer et al., 2023). Pos-
sessing an accurate understanding of environmental characteristics 
plays a crucial role in enhancing the timing of herbicide application, 
allocation of resources, and modeling of weed development (U. Farooq 
et al., 2022). In addition, the incorporation of remote sensing technol-
ogies, including satellite imaging and sensors placed on drones, into IoT 
framework enhances the capacity for data acquisition (Quan et al., 
2023). These technologies facilitate the utilization of artificial intelli-
gence in accessing high-resolution imaging and multispectral data, 
thereby enabling the generation of comprehensive weed maps and the 
timely identification of weed presence. Furthermore, data fusion tech-
niques combine IoT-generated data with remote sensing data, enhancing 
AI’s ability to identify weed infestations accurately (Gutiérrez et al., 
2008). In this SLR, 4% (3) of the studies utilize this technology for their 
solution (Fig. 12). 

3.5.2. UAVs 
UAVs, often referred to as drones, have emerged as indispensable 

tools for AI-driven weed management. UAVs equipped with advanced 
camera and sensor technologies provide an aerial perspective of agri-
cultural fields, facilitating the utilization of AI systems to effectively 
monitor and evaluate the presence of weed infestations with unparal-
leled accuracy. In the majority of research studies included, the UAVs 
are used to capture high-resolution images and aerial maps of agricul-
tural fields, providing valuable data for weed detection and classifica-
tion that are subsequently labeled and utilized for AI training (Olsen 
et al., 2019). In addition, Farooq et al. (2022) utilize AI models to 
analyze aerial images to identify weeds, assess their distribution, and 
generate detailed weed maps. The utilization of aerial perspective fa-
cilitates the identification of isolated weed patches that may be missed 
at ground level. Beyond aerial imaging, UAVs equipped with precision 
sprayers have significantly transformed weed management strategies. 
These advanced UAVs have the capability to not only acquire 
high-resolution imagery and generate weed maps, but also enable pre-
cise administration of herbicides to specific targets, by autonomously 
identifying weed-infested areas from their aerial vantage point and 
precisely administering herbicides, thereby guaranteeing the execution 
of weed control measures with unparalleled precision (Bah et al., 2018). 
This integration of UAV technology with herbicide delivery serves to 
reduce herbicide consumption and optimize resource allocation, hence 
fostering the adoption of sustainable and ecologically conscious weed 
management approaches in the agricultural sector. In this SLR, 28% (19) 
of the studies utilize this technology for their solution (Fig. 12). 

3.5.3. Field robots 
Field robots represent the next frontier in AI-driven weed manage-

ment, providing ground-level precision and automation. Equipped with 
advanced sensors and AI algorithms, these robots navigate agricultural 
fields, identify weeds, and apply targeted treatments. Field robots utilize 
computer vision and machine learning techniques to effectively discern 
and distinguish between various crops and weeds in real-time scenarios. 
AI algorithms are utilized to analyze and interpret data obtained from 
onboard cameras, enabling robots to make autonomous decisions 
regarding weed control, minimizing the need for human intervention. 
Weed control encompasses the utilization of either mechanical (Quan 
et al., 2022) or spraying devices (Jin et al., 2023) to apply precise 
treatments with pinpoint accuracy, targeting only the areas with weed 
infestations. This precision minimizes herbicide usage, reduces envi-
ronmental impact, and conserves resources. In this SLR, 19% (13) of the 
studies utilize this technology for their solution (Fig. 12). 

3.5.4. Herbicides 
Herbicides, though traditionally used in weed management, are Fig. 12. Quantity of articles referring to the technologies used.  
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currently experiencing advantages from AI-enhanced precision by 
optimizing herbicide application, ensuring that these chemicals are used 
judiciously and with minimal environmental impact (Chu et al., 2022). 
This reduces herbicide usage, minimizes crop exposure, and decreases 
the risk of environmental contamination. In addition, AI models can 
optimize herbicide dosages based on weed species, growth stages, and 
distribution. In this SLR, 46% (31) of the studies utilize herbicides for 
their solution (Fig. 12). 

3.6. Related impact of AI methods adoption 

The integration of AI methods into weed management has wide- 
ranging consequences across various dimensions, encompassing eco-
nomic, social, technological, and environmental dimensions. This the-
matic foci explores the multifaceted impact of AI methods adoption in 
conjunction with AI in weed management. Table B2 in Appendix B 
quotes the articles reviewed in this study and classifies them regarding 
their impact. Table B3 in Appendix B quotes the articles reviewed in this 
study and classifies them based on the related impact, while Fig. 13 
quantifies these articles referring to the related impact. 

3.6.1. Economic 
The utilization of AI-driven weed management systems yields sub-

stantial economic advantages for farmers and the agricultural sector as a 
whole. By accurately identifying and targeting weeds, AI helps optimize 
the use of resources, most notably herbicides, so farmers can reduce 
herbicide expenditures, minimize overuse, and allocate resources more 
efficiently. This optimization not only lowers production costs but also 
leads to increased crop yields with extensions to crop competitiveness 
and productivity, resulting in higher revenues for farmers (Hussain 
et al., 2020). Furthermore, the reduction in manual labor for weed 
control tasks, thanks to AI and automation, contributes to labor cost 
savings, further bolstering the economic viability of agriculture (Modi 
et al., 2023). 

In light of the previous literature review conducted by Du et al. 
(2023), which posits that agricultural studies pertaining to AI applica-
tions predominantly focus on the technical aspects while neglecting the 
economic component, it was deemed necessary to incorporate this 
dimension in the present research analysis to enhance its specificity. 
Partel et al. (2019a) endeavored to address this matter by developing an 
affordable system (~1500$) for weed management that has above 70% 
precision and recall rates. In addition, Khan et al. (2023) conducted a 
comparative analysis of the effects of Hand Weeding (HW) and AI on 
plant weight and spike count in wheat cultivation. Their results suggest 
that there was no statistically significant difference between the two 

methods (HW: 92 cm, 55, AI: 89 cm, 53), indicating that the AI appli-
cations are mature enough to replace human labor partially or 
completely. Simultaneously, the operational cost of AI was found to be 
less than HW, substantiating its superiority and indicating its potential 
for future applications. Although the advantages of adopting these 
practices based on both economic and environmental criteria are clearly 
apparent, their actual implementation remains limited. In this SLR, 19% 
(13) of the studies refer to the economic impact of their solution 
(Fig. 13). 

3.6.2. Social 
The adoption of AI methods in weed management carries a profound 

social impact, particularly with regard to consumers and their confi-
dence in the safety of food products. AI’s role in reducing herbicide 
usage and promoting a more eco-friendly environment directly con-
tributes to food safety, benefiting consumers in several ways. These 
benefits include the substantial mitigation of the potential for herbicide 
contamination on crops, thereby providing consumers with a guarantee 
of the integrity of their food products (Dang et al., 2023). Simulta-
neously, the utilization of AI-driven technology effectively reduces the 
level of chemical exposure experienced by agricultural workers and 
nearby communities, thereby aligning with the prevailing health and 
safety priorities (Jin et al., 2022a). Furthermore, the ecologically 
conscious consumers are attracted to the eco-friendly strategy of AI, 
which emphasizes the promotion of sustainable food sources (Gallo 
et al., 2023). Overall, AI’s contributions foster customer confidence 
within the agriculture sector, so strengthening the notion that contem-
porary technologies are actively striving to prioritize the welfare of 
consumers and the ecological sustainability of the planet (Subeesh et al., 
2022). In this SLR, 13% (9) of the studies refer to the social impact of 
their solution (Fig. 13). 

3.6.3. Technological 
The adoption of AI methods in weed management represents a sig-

nificant technological advancement in agriculture. It serves as a catalyst 
for innovation in the field, fostering the development of cutting-edge 
technologies such as precision agriculture, IoT integration, and ro-
botics. These technological advancements not only enhance the man-
agement of weeds but also possess wider implications in the field of 
agriculture (Bochtis et al., 2021). AI-driven systems facilitate the inte-
gration of emerging technologies, hence augmenting the total techno-
logical landscape of the agriculture industry. Therefore, articles that 
contribute to the advancement of technology are recorded. In this SLR, 
all the studies have technological impact of their solution (Fig. 13). 

3.6.4. Environmental 
One of the most crucial aspects of AI methods adoption in weed 

management is its positive environmental impact. By enabling precise 
weed identification and targeted herbicide application, plays a crucial 
role in reducing pesticide usage and mitigating the environmental 
footprint associated with weed control. This reduction in chemical input 
leads to a healthier agroecosystem, with fewer pollutants entering soil 
and water systems. Furthermore, the implementation of AI-driven weed 
management systems promotes the adoption of sustainable agricultural 
techniques, so harmonizing with ongoing conservation endeavors. 
Overall, the environmental impact of AI extends beyond its application 
in weed management, thereby making a significant contribution to the 
development of a more sustainable and environmentally friendly agri-
cultural landscape. In this SLR, 38% (25) of the studies refer to the 
environmental impact of their solution (Fig. 13). 

4. Discussion 

The preceding sections have meticulously examined the multifaceted 
landscape of AI in weed management, focusing on weed identification in 
agriculture, in the context of six thematic foci. In light of the Fig. 13. Quantity of articles referring to the related impact.  
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complexities inherent in this technological shift, it is crucial to partake 
in a discourse that synthesizes the key findings and elucidates the 
ramifications of weed control facilitated by artificial intelligence. In this 
discussion, impacts of AI on food safety, its role in enhancing weed 
management effectiveness, and its contribution to eco-friendliness 
through herbicides reduction are contemplated. Furthermore, the 
broader context of AI implementation, the significance of training 
datasets and AI models, and the importance of accuracy and perfor-
mance metrics in the successful adoption of AI systems are considered. 
The discussion is concluded by a reflection on the implications of AI 
integration for ancillary technologies in weed management and its 
broader impact on economics, society, technology, and the 
environment. 

AI-driven weed management stands as an embodiment of trans-
formative change, notably within the context of food safety. The utili-
zation of chemical herbicides in traditional agricultural practices has 
been consistently linked to apprehensions surrounding the potential 
contamination of food commodities, and multifold reports have been 
raised regarding herbicide residues in a variety of food products (Ca-
nadian Food Inspection Agency, 2020; Environmental Working Group, 
2023; European Food Safety Authority (EFSA), 2015). These findings 
raise apprehensions among consumers about the possible health hazards 
linked to the pesticide residues present in food, while scientists argue 
whether the levels of herbicide residues commonly detected in food do 
pose a substantial health hazard (Asghar and Malik, 2016; World Health 
Organization, 2022). A recent survey conducted by (Consumer Reports, 
2015), revealed that pesticides are a matter of apprehension for 85% of 
Americans, shifting to organic products. However, with AI’s precision in 
weed identification and targeted herbicide application, the risk of her-
bicide residues on crops is significantly reduced (Jiang et al., 2023). This 
is not only an immediate concern but also contributes to the bolstering of 
consumer confidence in the safety and integrity of food products. In 
addition, the judicious application of herbicides, facilitated by AI, con-
tributes to a reduction in the ecological footprint associated with weed 
control. The agricultural sector’s progress towards eco-friendliness is 
underscored by AI’s role in minimizing the ingress of pollutants into soil 
and water systems (Lou et al., 2022). Consequently, AI-driven weed 
management not only addresses weed proliferation but also ushers in an 
era characterized by environmentally responsible agriculture. Further-
more, the adoption of AI in weed management transcends conventional 
practices by the enhancement of the effectiveness of weed control 
strategies. By engaging in accurate weed identification, farmers get the 
ability to selectively target weeds, leading to enhanced resource allo-
cation and reduced herbicide overuse (Dang et al., 2023; Tang et al., 
2017). Consequently, agricultural resources are used more efficiently, 
crop yields experience a noteworthy increase, production costs are 
reduced, and revenues are augmented. Moreover, the reduced reliance 
on manual labor for weed control tasks is a testament to the potential for 
labor cost savings, further advancing the economic viability of agricul-
ture (Acemoglu and Restrepo, 2019). 

The successful implementation of AI in weed management is influ-
enced by several critical factors. The choice of capture technology, 
encompassing sensors, drones, and other data acquisition tools, pro-
foundly influences data quality and model accuracy; the construction of 
AI models relies on the foundational role of meticulously collected and 
comprehensive training datasets; and the selection of AI models, 
whether conventional machine learning or deep learning, dictates the 
level of precision in weed identification. Furthermore, the importance of 
accuracy and performance metrics cannot be understated; these metrics 
guide model refinement and validation, ensuring reliable results in real- 
world applications. The synergy between these factors underpins the 
comprehensive endeavor of AI implementation in weed management, 
offering a potent pathway towards agricultural innovation and weed and 
crop identification. The literature has employed leaf feature disparities 
in order to discriminate between crops and weeds (Dyrmann et al., 2016; 
Lottes et al., 2018; Wu et al., 2021). These include plant color (Lv et al., 

2022), leaf texture (Bakhshipour et al., 2017), spectra (Shirzadifar et al., 
2020), and shape (Bakhshipour and Jafari, 2018; Swain et al., 2011) of 
weeds. In addition, deep learning has the ability to conduct intricate 
feature extraction, effectively handle substantial volumes of data, and 
has exhibited its potential in diverse agricultural domains, including 
crop classification (Kamath et al., 2022a), pest and disease identification 
(Ahmad Loti et al., 2021), yield prediction (van Klompenburg et al., 
2020), farmland management (Quan et al., 2023), and growth analysis 
(Yasrab et al., 2021). 

What is more, the integration of AI with ancillary technologies is 
crucial in shaping the future of agriculture regarding weed management. 
The internet of things, UAVs, field robots, and AI-enhanced herbicides, 
complement AI’s capabilities, fostering a holistic and data-driven 
approach to weed control. These technologies enhance data acquisi-
tion, monitoring, decision-making, and intervention, ultimately 
advancing the precision and scope of weed management strategies. 
These technologies enhance data acquisition, monitoring, decision- 
making, and intervention, ultimately advancing the precision and 
scope of weed management strategies. Notably, a research endeavor was 
to devise an innovative and advanced mechanical robotic weeding sys-
tem that operates within crop rows. This system was designed to possess 
intelligent capabilities by leveraging deep learning techniques for the 
purpose of accurately detecting and distinguishing between crops and 
weeds. The findings of the study provide evidence supporting the 
viability of the suggested approach for controlling weeds within rows, 
with an 85.91% weed removal rate and a 1.17% crop injury rate. 
Similarly, UAVs are employed for image acquisition and facilitate weed 
mapping as indicated by several research endeavors in this study (Ajayi 
et al., 2023; Bah et al., 2018; 2020; de Camargo et al., 2021; Gallo et al., 
2023; Genze et al., 2022; Huang et al., 2020; Xu et al., 2023). Moreover, 
the proliferation of diverse sensors has facilitated the potential for weed 
management to be accomplished through the analysis of a broad spec-
trum of images obtained from various remote sensing platforms. In brief, 
the amalgamation of AI with ancillary technologies represents a 
convergence of innovation and sustainability, promising to redefine the 
contours of weed management practices in agriculture. 

Meanwhile, the adoption of AI methods in weed management radi-
ates its influence across economic, social, technological, and environ-
mental dimensions. From economic perspective, AI-driven weed 
management optimizes resources, enhances yields, and reduces pro-
duction costs. Socially, it empowers farmers, ensures food safety, and 
fosters consumer confidence. Technologically, it advances agricultural 
innovation and synergizes with emerging technologies. Environmen-
tally, it promotes sustainable practices and decreases the ecological 
footprint of weed control. Collectively, these dimensions underline the 
profound influence of AI methods adoption on agriculture and its 
broader societal and environmental impact. Despite these profound 
implications, the existing body of work predominantly emphasizes the 
technological dimension of AI applications in weed management while 
comparatively neglecting economic and social aspects. This phenome-
non could be attributed to the prevalent practice of conducting studies in 
experimental fields rather than in actual agricultural settings, hence 
posing challenges in accurately quantifying the economic gains resulting 
from practical implementation. Similarly, the impact of the social aspect 
is challenging due to the involvement of numerous factors. However, it 
is widely recognized that organic products are considered in a favorable 
light by consumers (Consumer Report, 2022). Following current Com-
mon Agricultural Policy’s (CAP) guidelines (European Commission, 
2023), it seems that the technological levels in weed management have 
been highly ameliorated, thus more emphasis should be given on the 
economic, environmental aspects, to increase the applicability of the 
examined practices considering sustainability. 

In summary, the implementation of AI-driven weed management has 
the potential to significantly impact the field of agriculture by revolu-
tionizing existing techniques and paradigms. The preceding discourse 
elucidates the diverse facets of this process, encompassing the 
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augmentation of food safety and efficacy, the mitigation of pesticide 
usage, and the promotion of environmental sustainability. It also un-
derscores the pivotal role of AI in revolutionizing weed management 
practices and fostering a sustainable and efficient agricultural 
ecosystem. As AI continues to evolve and integrate with complementary 
technologies, its potential to address weed proliferation while advancing 
agricultural sustainability remains a promising beacon for the future. 

The integration of AI into weed management promises trans-
formative benefits, but it is not without its challenges. One of the most 
significant hurdles faced in this technological shift is resistance to 
change. As agriculture adapts to AI-driven weed management practices, 
stakeholders encounter various forms of resistance that can impede the 
transformation and limit its potential impact. One of the main factors 
hindering the widespread adoption of AI in weed management is the 
strong attachment to and dependence on conventional farming methods. 
Generations of farmers have honed their skills and knowledge in con-
ventional weed control methods, such as manual weeding and blanket 
herbicide application, and the prospect of transitioning to AI-driven 
solutions can be met with skepticism, as it represents a departure from 
established and validated practices. Moreover, the complexity of AI 
technology can be daunting, especially for individuals lacking a strong 
background in digital technologies. Farmers and agricultural pro-
fessionals may perceive AI systems as daunting, fearing that they lack 
the technical expertise required to operate and troubleshoot these sys-
tems effectively. Consequently, digital literacy emerges as a catalyst for 
enabling and accelerating the transformation of agricultural practices. 
Digital literacy encompasses the knowledge, skills, and competencies 
required to effectively navigate, understand, and utilize digital tech-
nologies, including AI, in the context of weed management and serves as 
an empowerment tool for farmers and agricultural professionals as they 
adapt to AI-driven weed management. Understanding AI algorithms, 
data collection processes, and model outputs allows them to make 
informed decisions and optimize weed control strategies. 

5. Conclusions and future research 

In this article, a systematic literature review was conducted 
regarding artificial intelligence in weed management, in order to iden-
tify criteria towards weed identification and deep learning in agricul-
ture. Six thematic foci were identified with 23 criteria used to classify 
the articles. Of the 5821 documents found, 99 full-text articles were 
assessed, and 68 were included in this study. These articles were 
assessed based on the field information, factors of AI system adoption, AI 
implementation, Ancillary Technologies used, and related impact of AI 
methods adoption. 

The exploration of AI in weed management reveals a transformative 
potential with profound implications for agriculture, food safety, and 
environmental sustainability. As this SLR concludes, several key take-
aways emerge, underlining the significance of AI-driven weed man-
agement in the agricultural sector. AI integration in weed management 
signifies a paradigm shift from conventional practices, marked by pre-
cision in weed identification and optimized herbicide use, enabling 
agriculture to transition towards secure, more efficient, and eco-friendly 
weed management. Enhanced food safety is a direct outcome, as AI 
adoption reduces the risk of herbicide residues on crops, fostering con-
sumer confidence and ensuring the purity and safety of the food supply 
chain. The utilization of AI in weed management methods has been 
found to greatly enhance their efficacy. This is mostly due to the ability 

of AI to accurately identify weeds and apply herbicides in a targeted 
manner. By doing so, AI optimizes the allocation of resources, reduces 
production costs, and increases crop yields. Consequently, the imple-
mentation of AI in weed management strategies has the potential to 
greatly improve agricultural productivity. AI plays a pivotal role in 
promoting eco-friendliness by reducing herbicide usage, contributing to 
sustainability goals, minimizing environmental impact, and fostering 
responsible agricultural practices. Last but not least, the integration of 
AI with ancillary technologies, such IoT, UAVs, field robots, and herbi-
cides, promises to revolutionize weed management practices, offering 
opportunities for holistic, data-driven approaches to weed control. 

The review identifies several avenues for future research. The 
investigation of multi-criteria decision-making frameworks that account 
for diverse factors, such as crop type, weed species, and regional vari-
ations, could optimize AI-driven weed management strategies for 
various agricultural contexts. The assessment of the long-term envi-
ronmental and economic sustainability of AI-driven weed management 
practices is essential, including ecological impact, resource savings, and 
economic feasibility. Expanding the study of AI in weed management to 
diverse geographic regions and assessing its adaptability to different 
agricultural systems can provide valuable insights into global adoption 
patterns and challenges. Furthermore, in the context of the NATAE 
Horizon project (NATAE, 2023), the agroecology transition can be 
particularly appropriated in North Africa by identifying the most 
effective combinations of agroecological practices and establishing a 
standardized approach to designing locally-adapted strategies for tran-
sitioning to agroecology. Additionally, the project aims to foster 
collaboration and knowledge sharing by establishing a sustainable 
Mediterranean network and community, enhancing digital literacy. 
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Appendix A 

The final query on Scopus is “TITLE-ABS-KEY ({weed} AND {management} AND (({Artificial} AND {intelligence}) OR ({deep} AND {learning}))) 
AND PUBYEAR >2015 AND PUBYEAR <2024 AND (LIMIT-TO (DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "cp")) AND (LIMIT-TO (LANGUAGE, 
"English")) AND (LIMIT-TO (SRCTYPE, "j") OR LIMIT-TO (SRCTYPE, "p"))” while on WoS is “((TI=(weed management)) OR PUBL=(weed 
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management) OR AB=(weed management)) AND ((TI=(Artificial Intelligence)) OR PUBL=(Artificial Intelligence) OR AB=(Artificial Intelligence) OR 
(TI=(deep learning)) OR PUBL=(deep learning) OR AB=(deep learning))”. 

Appendix B  

Table B1 
Classification of the articles reviewed in this study pertaining to field information and factors of adoption  

Source Country of 
case 

Weed species Crop type Food 
safety 

Increase in 
efficacy 

Herbicide reduction 
/ eco-friendliness 

Saqib et al. (2023) Pakistan Chloris cucullata (grass), Cirsium arvense (creeping thistle), Convolvulus 
arvensis (bindweed) and Eschscholzia californica (california poppy) 

Wheat ● ●  

Panati et al. 
(2023) 

N/A broadleaf, soil, grass Soybean  ●  

Quan et al. (2022) China broadleaf weeds, gramineous weeds Crop 
general  

●  

Jiang et al. (2023) China gramineous weeds, broadleaf weeds Corn  ● ● 
Albraikan et al. 

(2022) 
N/A N/A Crop 

general  
●  

(H. Zhang et al., 
2022) 

China Portulaca oleracea, Eleusine indica, Chenopodium album, Amaranth blitum, 
Abutilon theophrasti, Calystegia 

Peanut   ● 

Hussain et al. 
(2020) 

N/A lambsquarters (Chenopodium album) Potato  ● ● 

(U. Farooq et al., 
2022) 

N/A N/A Sesame ● ● ● 

Fatima et al. 
(2023) 

Pakistan Horseweed, herb paris, grasses, and small weeds Multiple ●  ● 

Modi et al. (2023) India billygoat weed (Ageratum conyzoides L.), purple nutsedge (Cyperus 
rotundus L.), scarlet pimpernel (Anagallis arvensis L.), Lepidium 

didymum (Coronopus didymus L.), field bindweed (Convolvulus arvensis 
L.), ragweed parthenium (Parthenium hysterophorus L.), spiny sowthistle 
(Sonchus asper L.), corn spurry (Spergula arvensis L.) and asian scalystem 

(Elytraria acaulis L.) 

Sugarcane  ● ● 

Sapkota et al. 
(2022) 

USA morningglories (Ipomoea spp.), johnsongrass (Sorghum halepense (L.) 
Pers.), Palmer amaranth (Amaranthus palmeri S. Watson), prostrate 

spurge (Euphorbia humistrata Engelm.), browntop panicum (Panicum 
fasiculatum Sw.). 

Cotton  ●  

Xu et al. (2023) USA N/A Soybean  ● ● 
Kong et al. (2023) China setaria viridis, eleusine indica, wild pea, petunia Multiple  ●  
Barnhart et al. 

(2022) 
USA amaranth (Amaranthus palmeri) Soybean  ● ● 

Valente et al. 
(2022) 

Germany Rumex obtusifolius (Rumex or broad leaved dock) Crop 
general  

●  

Danilevicz et al. 
(2023) 

Australia Lupin Crop 
general   

● 

Gallo et al. (2023) China Mercurialis annua (French mercury) Sugar beet   ● 
Costello et al. 

(2022) 
Australia Parthenium (Parthenium hysterophorus L.) N/A  ● ● 

Sapkota et al. 
(2020) 

USA Italian Ryegrass Wheat  ●  

Moraitis et al. 
(2022) 

Greece N/A Lettuce ●  ● 

(G C et al., 2022) USA horseweed, kochia, ragweed, and waterhemp Multiple  ● ● 
Hu et al. (2020) N/A 8 species unidentified N/A  ●  
Jin et al. (2022b) China N/A Bok choy  ● ● 
Lou et al. (2022) China Echinochloa crusgalli (L.) Beauv, Solanum nigrum L, Chenopodium album 

Linn, grass 
Corn  ●  

Wang et al. (2020) China N/A Sugar beet  ●  
Dang et al. (2023) USA 12 weed species - unspecified Cotton ● ● ● 
Hennessy et al. 

(2022) 
Canada Hair fescue, sheep sorrel Wild 

blueberry   
● 

(P. Wang et al., 
2022) 

China 25 weed species N/A  ● ● 

Subeesh et al. 
(2022) 

India N/A Bell pepper ●  ● 

Thanh Le et al. 
(2021) 

Australia Wild radish, Capeweed Barley  ●  

(A. Wang et al., 
2022) 

N/A N/A Crop 
general   

● 

(A. Farooq et al., 
2022) 

N/A N/A N/A ● ●  

Olsen et al. (2019) Australia Multiple Multiple  ● ● 
Yu et al. (2019a) USA dandelion (Taraxacum officinale Web.), ground ivy (Glechoma hederacea 

L.), and spotted spurge (Euphorbia maculata L.) 
Crop 

general  
● ● 

Liu et al. (2023) China cleavers (Galium aparine L.), chickweed (Malachium aquaticum L.), 
Persian speedwell (Veronica persica Poir), shepherd’s purse [Capsella 
bursa-pastoris (L.) Medik], and sweet woodruff [Galium odoratum (L.) 

Scop.]. 

Wheat  ● ● 

(continued on next page) 
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Table B1 (continued ) 

Source Country of 
case 

Weed species Crop type Food 
safety 

Increase in 
efficacy 

Herbicide reduction 
/ eco-friendliness 

Chen et al. (2022) USA Multiple Cotton  ● ● 
Amarasingam 

et al. (2023) 
New 

Zealand 
Mouse-Ear Hawkweed (Pilosella officinarum) N/A  ●  

Zou et al. (2022) China Trigonotis peduncularis, Rorippa indica (L.) Hiern, Cirsium setosum, 
Chenopodium album L. 

Wheat  ●  

Rahman et al. 
(2023) 

USA Carpetweed (Mollugo verticillata), Morningglory (Ipomoea genus), and 
Palmer Amaranth (Amaranthus palmeri) 

Cotton  ● ● 

Fathipoor et al. 
(2023) 

N/A N/A Carrot  ● ● 

(J.-L. Zhang et al., 
2022) 

China Geminate Speedwell weeds, Wild Oats weeds, Malachium Aquaticum 
weeds, Asiatic Plantain weeds, Sonchus Brachyotus 

Lettuce ●  ● 

Nasiri et al. (2022) N/A N/A Sugar beet  ●  
Ajayi and Ashi 

(2023) 
Nigeria N/A Multiple ● ● ● 

Farooque et al. 
(2023) 

Canada lamb’s quarters (Chenopodium album L.), and corn spurry (Spergula 
arvensis L.) 

Potato  ● ● 

Cai et al. (2023) China N/A Pineapple   ● 
Saleem et al. 

(2022) 
Australia 8 types Chinee 

apple  
● ● 

Jin et al. (2022a) USA dallisgrass, goosegrass, Virginia buttonweed N/A  ● ● 
Gao et al. (2020) Belgium Hedge bindweed (Convolvulus sepium) Sugar beet  ●  
Xu et al. (2021) N/A Black-grass, Charlock, and Cleavers Multiple  ●  
Ma et al. (2019) China N/A Rice  ●  
Huang et al. 

(2020) 
China L. chinensis, Cyperus iric, Digitaria sanguinalis (L), Barnyard Grass Rice ●   

Li et al. (2021) N/A N/A N/A ●   
Kamath et al. 

(2022b) 
India sedges, grasses, and broadleaved Crop 

general  
● ● 

Peteinatos et al. 
(2020) 

N/A N/A Multiple ●  ● 

Xia et al. (2022) China barnyardgrass, velvetleaf N/A   ● 
Ajayi et al. (2023) Nigeria N/A Multiple  ●  
de Camargo et al. 

(2021) 
Germany N/A Wheat  ● ● 

Ofori and Omar 
(2021) 

N/A Multiple N/A  ●  

Pérez-Porras et al. 
(2023) 

Spain poppy (Papaver rhoeas) Wheat  ● ● 

Bah et al. (2018) N/A N/A Crop 
general  

● ● 

Osorio et al. 
(2020) 

N/A N/A Lettuce  ●  

Partel et al. 
(2019b) 

N/A N/A N/A ● ● ● 

Etienne et al. 
(2021) 

USA N/A Multiple  ● ● 

Halstead et al. 
(2021) 

USA N/A Multiple  ●  

Khan et al. (2021) Pakistan N/A Multiple  ● ● 
Quan et al. (2023) China N/A Corn  ●  
Kamath et al. 

(2022a) 
India N/A Rice   ● 

Genze et al. (2022) Germany Goosefoot (Chenopodium album L.), Field pennycress (Thlaspi arvense), 
Wild chamomile (Matricaria chamomilla), Common gypsyweed 

(Veronica officinalis) and Cotton thistle (Onopordum acanthium) 

Crop 
general   

●   

Table B2 
Classification of the articles reviewed in this study pertaining to AI implementation and ancillary technologies used  

Source Functionality Training 
Dataset 

Capture Technology for 
dataset and testing 

AI model Outcomes and Accuracy Auxiliary 
technolo- 
gies 

Herbi- 
cide 

Saqib et al. 
(2023) 

Weed 
identification 

1065 Logitech HD 920c 
webcam pro camera with 
a resolution of 1 MP and 
dimensions of 1280 ×
720 

YOLOv3, YOLOv4, YOLOv3- 
tiny, YOLOv4-tiny 

mAP = 73.1% None No 

Panati et al. 
(2023) 

Weeds and crops 
identification 

15336 Open-source dataset 4- layer customized CNN N/A None No 

(continued on next page) 
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Table B2 (continued ) 

Source Functionality Training 
Dataset 

Capture Technology for 
dataset and testing 

AI model Outcomes and Accuracy Auxiliary 
technolo- 
gies 

Herbi- 
cide 

Quan et al. 
(2022) 

Weed detection 20000 Pictures with resolutions 
of 630 × 512 pixels 

YOLOv3 crop detection = 98.50%, weed 
detection = 90.9%, weed removal 
= 85.91%, crop injury = 1.17% 

Robotics No 

Jiang et al. 
(2023) 

Weed detection 
and removal 

8000 RER-USBFHD01M-LS36 
camera 1980 × 1080 

YOLOv5 removal rate of 90.0%–94.5%, crop 
damage rate of 1.95%–0.82%, 
detection accuracy: 93.33%, 
15.28% of the standard herbicide 
dosage was used 

Robotics Yes 

Albraikan et al. 
(2022) 

Weed detection 3000 N/A MBMODL-WD accuracy 98.99%, precision 96.13 None No 

(H. Zhang et al., 
2022) 

Weed 
identification 

3355 Fuji Finepixs4500 
camera - 2017 × 2155 
pixels 

EM-YOLOv4-Tiny mAP = 94.54% None No 

Hussain et al. 
(2020) 

Weed detection 
and removal 

12000 Canon PowerShot SX540 
HS camera, Logitech 
C920 Webcam HD Pro 

tiny-YOLOv3 42% reduced sprayd liquid Robotics Yes 

(U. Farooq 
et al., 2022) 

Weed detection 1300 Open-source dataset YOLOv4-tiny mAP = 85.55%, average loss =
0.25 

IoT No 

Fatima et al. 
(2023) 

Weed detection 
and removal 

9000 1280 × 1024 pixel 
camera 

YOLOv5 mAP = 88% Robotics No 

Modi et al. 
(2023) 

Weed 
identification 

5094 48 MP Sony IMX586 DarkNet53 Accuracy 99.1%, precision 99.3% None Yes 

Sapkota et al. 
(2022) 

Weed 
identification 

1230 100-MP FUJIFILM 
GFX100 

Mask R–CNN mAP = 80% UAV No 

Xu et al. (2023) Weeds and crops 
detection 

1181 Camera resolution 4864 * 
3648 pixels 

ResNet101_v and DSASPP accuracy of 0.905 
IoU score of 0.959 

UAV No 

Kong et al. 
(2023) 

Weeds and crops 
identification 

2140 Oneplus8P - 48 MP 
camera 

YOLOv5 mAP = 84.3% None No 

Barnhart et al. 
(2022) 

Weeds and crops 
identification 

4492 Zenmuse X5R RAW 
camera 

YOLOv5 mAP = 77%, highest F1 score =
72% 

None Yes 

Valente et al. 
(2022) 

Weed detection N/A Phantom 3 Professional 
UAV’s camera 

MobileNet, VGG, Resnet, 
DenseNet, ShuffleNet, 
EfficientNet, MNASNet 

F1-Score = 78.36% and AUROC =
93.74% 

UAV No 

Danilevicz et al. 
(2023) 

Weed detection 9171 Open-source dataset, and 
DJI Phantom 4 
unoccupied aerial vehicle 
(UAV) RGB camera 

Resnet18 average precision = 0.86, 
intersection over union = 0.60, and 
F1 score = 0.70 

UAV Yes 

Gallo et al. 
(2023) 

Weed detection 4405 DJI phantom4 pro 
camera, and open-source 
dataset 

YOLOv7 precision = 61.3%, mAP 56.66, 
recall = 62.1% 

UAV Yes 

Costello et al. 
(2022) 

Weed detection 21784 Nikon D2 with a 24–70 
mm lens and a focal 
length of 70 mm 

Yolov4 detection accuracy = 94% None No 

Sapkota et al. 
(2020) 

Weed detection N/A DJI 
Phantom 4 Pro with RGB 
sensor (12 megapixels) 

deep learning-based 
estimation 

precision = 95.44 ± 4.27%, recall 
= 95.48 ± 5.05%, F-score = 95.56 
± 4.11% 

UAV No 

Moraitis et al. 
(2022) 

Weed detection 400 OV2640 camera Faster-RCNN-Inception-V2 maximum accuracy 92% Robotics No 

(G C et al., 
2022) 

Weeds and crops 
identification 

3792 Google Pixel 5 mobile 
camera 

SVM and VGG16 average f1-score >93% None Yes 

Hu et al. (2020) Weed 
identification 

17509 Open-source dataset Graph Weeds Net (GWN) top-1 accuracy 98.1% None No 

Jin et al. 
(2022b) 

Weeds and crops 
identification 

11339 HV1300FC, DaHeng 
Image 

YOLO-v3, CenterNet, and 
Faster R–CNN 

F1 score = 97.1%, precision =
97.1%, recall = 97.0% 

None No 

Lou et al. (2022) Weeds and crops 
identification 

1500 LR1601-IRIS LIDAR and 
Pika L hyperspectral 
system 

3D-CNN accuracy = 83.32% Robotics No 

Wang et al. 
(2020) 

Weeds and crops 
detection 

11780 open-source dataset, 
Canon 
60D 

encoder-decoder network, 
transfer learning 

MIoU = 88.91%, mean accuracy =
96.12% 

None No 

Dang et al. 
(2023) 

Weeds and crops 
detection 

5648 Mobile phones >10 
megapixels 

YOLOv3-YOLOv7 max mAP = 95,22 UAV No 

Hennessy et al. 
(2022) 

Weed detection N/A Canon T6 
DSLR camera, LG G6 
smartphone, Logitech 
c920 

YOLOv3-Tiny F1-scores of up to 0.97 None Yes 

(P. Wang et al., 
2022) 

Weed 
identification 

14035 Nikon D5300 SLR YOLOv3, YOLOv5, and 
Faster R–CNN 

average accuracy: 91.8%, 92.4%, 
and 92.15% respectively 

None No 

Subeesh et al. 
(2022) 

Weed detection 1106 Xiaomi Mi 11 × mobile 
device’s rear camera 

Alexnet, GoogLeNet, 
InceptionV3, Xception 

InceptionV3: accuracy = 97.7%, 
precision = 98.5%, recall = 97.8% 

None Yes 

Thanh Le et al. 
(2021) 

Weed detection 3380 VITA 2000 Faster RCNN, Inception- 
ResNet-V2 

mAP = 0,555 None No 

(A. Wang et al., 
2022) 

Weeds and crops 
detection 

5536 Open-source dataset TIA-YOLOv5 F1-scoreweed = 70.0%, Apweed =
80.8%, mAP = 90.0% 

None No 

(continued on next page) 
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Table B2 (continued ) 

Source Functionality Training 
Dataset 

Capture Technology for 
dataset and testing 

AI model Outcomes and Accuracy Auxiliary 
technolo- 
gies 

Herbi- 
cide 

(A. Farooq 
et al., 2022) 

Weed detection 
and mapping 

1158 16-band XIMEA SNm 4 ×
4 camera, four-band 
Sequoia multispectral 
camera 

Τransferable CNN F1 score = 77.7%, precision =
77.45%, recall = 77.9% 

IoT No 

Olsen et al. 
(2019) 

Weed 
identification 

17509 1920 × 1200 px camera Inception-v3 and ResNet-50 average classifcation accuracy: 
95.1% and 95.7% 

Robotics Yes 

Yu et al. 
(2019a) 

Weed detection 33086 Sony® Cyber-Shot, 
Canon® EOS Rebel T6 
digital camera 

VGGNet, AlexNet, DetectNet F1 scores ≥92.78% recall values ≥
99.52% 

None Yes 

Liu et al. (2023) Weed detection 424 Panasonic® DMC-ZS110 SSL algorithm, CBAM, 
ResNet50 

accuracy ≥94.7% and ≥96% Robotics Yes 

Chen et al. 
(2022) 

Weed 
identification 

5187 N/A DTL, ResNeXt101 F1 scores >95% None No 

Amarasingam 
et al. (2023) 

Weed detection N/A Micasense Altum 
multispectral camera 

eXtreme Gradient Boosting 
(XGB), Support Vector 
Machine (SVM), Random 
Forest (RF), and K-nearest 
neighbours (KNN) 

testing accuracy >96%, validation 
accuracy> 97% 

UAV No 

Zou et al. (2022) Weeds and crops 
detection 

1200 RERVISION USB8MP02G U-net IoU≤88.98% None Yes 

Rahman et al. 
(2023) 

Weeds and crops 
detection 

848 4442 × 4335 pixels 
camera 

YOLOv5, RetinaNet, 
EfficientDet, Fast RCNN and 
Faster RCNN 

Highest accuracy mAP = 79.98% None No 

Fathipoor et al. 
(2023) 

Weed detection N/A Open-source dataset U-net IoU = 65% None No 

(J.-L. Zhang 
et al., 2022) 

Weeds and crops 
identification 

1918 N/A SE-YOLOv5x precision = 97.6%, recall = 95.6%, 
mAP = 97.1%, F1-score = 97.3% 

None No 

Nasiri et al. 
(2022) 

Weed detection 1385 FotoClip, 2164 U-net, ResNet50 accuracy = 99.06, IoU = 84.23 None Yes 

Ajayi and Ashi 
(2023) 

Weed detection 254 N/A Inception V2, faster RCNN classification accuracy = 97.2%, 
weed precision = 96.2%, weed 
recall = 97.5% and a F1 score =
99% 

UAV No 

Farooque et al. 
(2023) 

Weed detection 
and spray 

2000 Canon PowerShot SX540 
HS camera, Logitech 
C270 HD Webcam 

YOLOv3-tiny precision = 87%, recall = 75%, 
mAP = 76.4%, Reduction in 
spraying liquid of 47 and 51% for 
weed and diseased plant detection 

Robotics Yes 

Cai et al. (2023) Weed 
identification 

2176 DJI mavic 12 megapixels 
camera 

ResNet50 F-score = 87.79% UAV Yes 

Saleem et al. 
(2022) 

Weed 
identification 

17509 N/A SSD, YOLO-v4, EfficientDet, 
CenterNet, RetinaNet, Faster 
RCNN, and RFCN, 

highest mAP = 87.64% None No 

Jin et al. 
(2022a) 

Weed 
identification 

24000 DSC-HX1, SONY® GoogLeNet, MobileNet-v3, 
ShufeNet-v2, and VGGNet 

accuracy≥0.999, F1 scores≥0.998 Robotics Yes 

Gao et al. 
(2020) 

Weeds and crops 
detection 

2723 Nikon D7200 tiny-YOLOv3 mAP = 0.829 None No 

Xu et al. (2021) Weeds and crops 
detection 

4750 Open-source dataset Xception, ImageNet, 
XGBoost 

accuracy = 99.63% None No 

Ma et al. (2019) Weeds and crops 
identification 

N/A Canon IXUS 1000 HS SegNet, FCN, U-Net accuracy = 92.7%, 89.5% and 
70.8% respectively 

None No 

Huang et al. 
(2020) 

Weed detection 
and mapping 

604 SZ DJI drone camera OBIA method accuracy = 66.6% UAV Yes 

Li et al. (2021) Weeds and crops 
detection, and 
planting 

180 N/A MobileNetV2-SSD accuracy = 94% Robotics No 

Kamath et al. 
(2022b) 

Weed 
identification 

4950 Canon PowerShot 
SD3500 IS, Sony 
Cybershot (DSC-W220) 

YOLO-v2 accuracy = 90% None Yes 

Peteinatos et al. 
(2020) 

Weeds and crops 
identification 

93000 Sony Alpha 7R Mark4 VGG16, ResNet–50, and 
Xception 

plant accuracy = 77%, weed 
accuracy = 98% 

None Yes 

Xia et al. (2022) Weed 
identification 

N/A DJI Phantom camera N/A barnyardgrass accuracy = 81.1% 
velvetleaf accuracy = 92.4% 

UAV Yes 

Ajayi et al. 
(2023) 

Weeds and crops 
identification 

254 DJI Phantom 4 drone 
camera 

YOLOv5 accuracy = 65, precision = 43, 
recal = 43% 

UAV No 

de Camargo 
et al. (2021) 

Weeds and crops 
detection 

N/A Sony NEX 5N ResNet-18 accuracy = 94% UAV Yes 

Ofori and Omar 
(2021) 

Weeds and crops 
detection 

5539 Open-source dataset EfficientNet, transfer 
learning 

accuracy = 95.44% None No 

Pérez-Porras 
et al. (2023) 

Weed detection 6319 Sony FDR-AX100E YOLOv5 accuracy = 77%, mAP = 76.2%, 
F1-score = 75.3% 

None Yes 

Bah et al. 
(2018) 

Weed detection 5534 DJI Phantom 3 Pro drone 
camera 

ResNet18 AUCs>82% UAV Yes 

(continued on next page) 
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Table B2 (continued ) 

Source Functionality Training 
Dataset 

Capture Technology for 
dataset and testing 

AI model Outcomes and Accuracy Auxiliary 
technolo- 
gies 

Herbi- 
cide 

Osorio et al. 
(2020) 

Weed detection 100 Mavic Pro with the Parrot 
Sequoia multispectral 
camera 

SVM, YOLOv3, n Mask 
R–CNN 

F1-scores of 88%, 94%, and 94% 
respectively 

UAV Yes 

Partel et al. 
(2019b) 

Weed detection 
and spray 

1000 Webcam Logitech c920 YOLOv3 precision = 71%, recall = 78% Robotics Yes 

Etienne et al. 
(2021) 

Weed 
identification 

374 a DJI Matrice 600 Pro 
hexacopter camera 

YOLOv3 AP = 91.48% UAV Yes 

Halstead et al. 
(2021) 

Weed and crop 
detection and 
removal 

2961 PATHoBot camera Mask-RCNN precision = 86.5%, recall = 75.2, 
F1-score = 80.4 

Robotics Yes 

Khan et al. 
(2021) 

Weed and crop 
detection and 
spray 

5400 DJI Spark camera faster R–CNN accuracy = 94.7% UAV Yes 

Quan et al. 
(2023) 

weed 
competition 
analysis 

1855 Pika L hyperspectral 
camera 

CCI-A prediction accuracy = 85% IoT No 

Kamath et al. 
(2022a) 

Weed detection 2345 Canon Power shot 
SD3500 IS and Sony 
DSLR 

PSPNet, UNet, and SegNet IoU>70%, accuracy>90% None Yes 

Genze et al. 
(2022) 

Weed 
identification 

N/A DJI Mavic 2 Pro camera UNet-like, ResNet34 F1-score>89% UAV Yes   

Table B3 
Classification of the articles reviewed in this study pertaining to the related impact  

Source Document Type Technological Social Economic Environmental 

Quan et al. (2022) Case study ●    
Jiang et al. (2023) Algorithm ●    
Albraikan et al. (2022) Case study ●  ● ● 
(H. Zhang et al., 2022) Case study ●   ● 
Hussain et al. (2020) Framework ●    
(U. Farooq et al., 2022) Algorithm ●    
Fatima et al. (2023) Framework ●  ● ● 
Modi et al. (2023) Algorithm ● ●  ● 
Sapkota et al. (2022) Framework ●    
Xu et al. (2023) Framework ●  ● ● 
Kong et al. (2023) Framework ●    
Barnhart et al. (2022) Algorithm ●    
Valente et al. (2022) Framework ●  ●  
Danilevicz et al. (2023) Framework ●    
Gallo et al. (2023) Case study ●    
Costello et al. (2022) Case study ●   ● 
Sapkota et al. (2020) Framework ● ●  ● 
Moraitis et al. (2022) Framework ●    
(G C et al., 2022) Framework ●    
Hu et al. (2020) Framework ●    
Jin et al. (2022b) Framework ●   ● 
Lou et al. (2022) Algorithm ●    
Wang et al. (2020) Framework ●    
Dang et al. (2023) Framework ●  ●  
Hennessy et al. (2022) Framework ●    
(P. Wang et al., 2022) Framework ● ●  ● 
Subeesh et al. (2022) Case study ●   ● 
Thanh Le et al. (2021) Case study ●   ● 
(A. Wang et al., 2022) Case study ● ●  ● 
(A. Farooq et al., 2022) Case study ●  ●  
Olsen et al. (2019) Algorithm ●   ● 
Yu et al. (2019a) Algorithm ●    
Liu et al. (2023) Case study ●    
Chen et al. (2022) Case study ●  ●  
Amarasingam et al. (2023) Framework ●    
Zou et al. (2022) Case study ●    
Rahman et al. (2023) Framework ●    
Fathipoor et al. (2023) Framework ●  ● ● 
(J.-L. Zhang et al., 2022) Case study ●    
Nasiri et al. (2022) Algorithm ●    
Ajayi and Ashi (2023) Algorithm ● ●  ● 
Farooque et al. (2023) Framework ● ●   
Cai et al. (2023) Algorithm ● ●  ● 
Saleem et al. (2022) Case study ●  ●  

(continued on next page) 
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Table B3 (continued ) 

Source Document Type Technological Social Economic Environmental 

Jin et al. (2022a) Framework ●    
Gao et al. (2020) Algorithm ●    
Xu et al. (2021) Framework ●    
Ma et al. (2019) Algorithm ●    
Huang et al. (2020) Case study ●    
Li et al. (2021) Case study ●    
Kamath et al. (2022b) Algorithm ●   ● 
Peteinatos et al. (2020) Framework ●    
Xia et al. (2022) Algorithm ●   ● 
Ajayi et al. (2023) Framework ● ●   
de Camargo et al. (2021) Framework ●    
Ofori and Omar (2021) Case study ●    
Pérez-Porras et al. (2023) Algorithm ●   ● 
Bah et al. (2018) Algorithm ●    
Osorio et al. (2020) Case study ●  ● ● 
Partel et al. (2019b) Framework ●  ● ● 
Etienne et al. (2021) Case study ●    
Halstead et al. (2021) Framework ●  ● ● 
Khan et al. (2021) Case study ●  ● ● 
Quan et al. (2023) Framework ●    
Kamath et al. (2022a) Framework ●   ● 
Genze et al. (2022) Algorithm ●    
Quan et al. (2022) Framework ● ●  ● 
Jiang et al. (2023) Framework ●     

References 

Acemoglu, D., Restrepo, P., 2019. Automation and new tasks: how technology displaces 
and reinstates labor. J. Econ. Perspect. 33, 3–30. https://doi.org/10.1257/ 
jep.33.2.3. 
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