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DYNAMIC OPTIMISATION PROBLEMS: DIFFERENT RESOLUTION 
METHODS REGARDING AGRICULTURE AND NATURAL RESOURCE 

ECONOMICS 
 
 
Abstract: 
 
There are two well-known methods mathematically equivalent to solve stochastic dynamic 
optimisation problems concerning natural and agricultural resources: Stochastic Dynamic 
Programming (SDP) and Discrete Stochastic Programming (DSP). Both are subject to major 
limitations in practice. 
 
Although the dynamic programming method permits considering a large number of decision 
stages, since the multi-stage problem in question is broken down into several one-stage 
problems, the number of state and decision variables must remain limited. In practice, this 
technique makes it necessary to limit the possible values of the model's state and decision 
variables to a finite discrete set. The solutions obtained are therefore approximate and, in the 
case of non-linear functions, the errors can be non-negligible. Dynamic programming models, 
which are much used for fisheries and forestry management, are difficult to adapt to agricultural 
resource problems. 
  
As for discrete stochastic programming, it permits taking into account the diversity of activities 
and constraints specific to agricultural decision problems. DSP permits working with 
continuous variables and do not require the utility function to be separable. Nonetheless, 
application of this technique remains limited to problems with a low number of stages: since 
optimisation is inter-temporal, the model's size increases exponentially with the number of 
decision stages. 
 
By making the hypothesis that the decision-maker is more «myopic» than the dynamic 
programming assumes, we shall propose another method of solving stochastic dynamic 
problems: recursive stochastic programming (RSP). The main difference of this method in 
comparison with the previous ones is the way information enters the model. In this case, 
information arrives step by step and then not all the information is available at the time of 
making decisions. The key idea is therefore that the decision-maker cannot fully anticipate the 
responses of nature and must opt for a sub-optimal decision. Since the stochastic dynamic 
problem is solved by a sequence of inter-temporal optimisations, this approach allows 
simultaneously considering a high number of variables and stages and permits to define 
separately short and long term decisions. It has major advantages when the system must be 
represented by a considerable number of state variables or in the case of a large number of 
possible activities (reservoir management, irrigation management, soil erosion, etc.). 
 
In this paper, these different methods are compared and a practical application concerning water 
allocation in agriculture is presented, where levels of water applied to different crops are 
decided in the short term and investment in the long term. 
 
Keywords : Stochastic programming, Recursive stochastic programming, Agricultural 
resources. 
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1. GENERAL INTRODUCTION 

 
The need to take into account sustainability in agricultural resource management is now 
universally admitted. While the term «sustainability» can mean different things to 
different people, it always involves a consideration of the future. From an economic 
point of view, sustainability can be defined as an improvement of the performance of a 
system so as not to exhaust the basic natural resources on which its future performance 
depends (Pierce and al., 1990). This definition emphasizes the importance of preserving 
the natural resource base. 
 
Thus, sustainability is a dynamic concept with underlying inter-temporal trade-offs. 
Implementing the notion of sustainability requires not only knowing to what extent 
short term profit is preferable to future profit, but also the effect of current production 
decisions on the future performance of the system. 
 
From this standpoint, natural resources can be understood as stocks of natural capital. 
Regarding renewable resources, the availability of a resource will decrease if its 
extraction rate exceeds its rate of natural regeneration. For instance, if the water 
extraction rate from an aquifer exceeds the rate of replenishment, the availability of this 
resource will decrease over time. 
 
Furthermore, most natural resource problems involve sequential, risky and irreversible 
decisions. Thus the problem of natural resource management is one of inter-temporal 
allocation in a context of uncertainty and irreversibility. The mathematical basis for 
solving these dynamic problems is provided by the optimal control theory. The 
analytical solution of optimal control models, however, is only possible in the case of 
very simple problems. 
 
Thus, applied research calls for operational research techniques to treat increasingly 
complex resource management problems. Tools such as simulation, mathematical 
programming and dynamic programming can be used, depending on the problem's 
complexity. 
 
Simulation models are pertinent for extremely non- linear systems containing stochastic 
elements. These models do not use optimisation algorithms and allows us to analyse the 
evolution of the system over time in different scenarios. 
 
On the other hand, mathematical and dynamic programming models are inter-temporal 
optimisation models capable of obtaining an optimal solution, given the system's 
objective function and constraints. A reason often cited for the low adoption of these 
stochastic optimisation techniques is what Richard Bellman, the father of dynamic 
programming, termed the curse of dimensionality, which refers to the explosive growth 
of the model as the number of variables increases. 
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As we will show further on, dynamic programming models - well suited for fisheries 
and forestry management - are more difficult to apply to agricultural resource problems. 
 
In this paper, these different techniques for solving dynamic optimisation problems are 
compared, particularly mathematical and dynamic programming. We emphasize the 
advantages and disadvantages of these methods and their respective fields of 
application. Furthermore, we propose an alternative technique for solving stochastic 
dynamic problems. 
 
 
 

2. CLASSIFICATION OF DYNAMIC PROBLEMS 

 

2.1. Time and models 

Agricultural and resource economics models are often constrained optimisation 
problems. The general form of such a problem is: 
 

Optimise ( )nxxxf ,,, 21 K  

subject to ( ) 0,,, 21 =ni xxxg K  

 
where ƒ(·) is a given objective function of n decision variables x1,…,xn which must obey 
the constraint set given by equations gi. 
 
Regarding time representation, we differentiate two types of models: 

• Static models do not take explicit account of time. Decision variables does not 
depend on time. Calculations are carried out to obtain the optimal value of the 
objective function at a given moment. Time is not explicitly included in the 
model's structure. 

• Dynamic models take time into account explicitly. Some of the decision 
variables are functions of time (usually separated into state variables and control 
variables). Model solution gives optimal decisions ove r time. The temporal 
element is taken into account in different ways described further on. Here, 
however, we provide a temporary, "fuzzy" definition, in order to introduce 
additional information later.  

 
The full advantages of dynamic analysis are apparent when analysing problems in 
which certain decisions have consequences on several future periods or when the 
problem consists in analysing the transition of a system from one state to another one 
over time. 
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Below we present a classification of dynamic models. Provided that it does not exist an  
universally accepted terminology, we have attempted to use the terms most often 
employed in the literature. 
 
 

Dynamic models  

è Inter-temporal optimisation models: the model takes into account all the periods 
included in the planning horizon. 

è Deterministic models 

è Stochastic models  
à Single decision models  
à Sequential decision models - representation of sequential decision-making 

with the gradual incorporation of information. 

è Recursive models – sequential optimisation, each optimisation depends on the 
results of the previous iteration. 

 
 
 
 

2.2. Inter-temporal dynamic optimisation models 

2.2.1. Introduction 

A typical case in which dynamic analysis is very pertinent is that of investments. A 
capital good with a lifetime of several years can be taken into account in an annual static 
model by considering its annual rental value as a cost linked to its use. This may suffice 
if the problem to be analysed does not require thorough study of the investment process. 
However, building a dynamic inter-temporal optimisation model is pertinent if the 
investment through time must be analysed in detail in order to study, for example, the 
impact of different credit policies. 
 
In this type of model, optimisation is performed over a discounted flow of returns (net 
revenue, consumption, …). The choice depends on the type of problem analysed. 
Optimisation is therefore inter-temporal and the period of time considered in the 
analysis is termed planning horizon. Formulating and using these models lead to 
different problems. As temporal preference must be taken into account for optimisation 
over several stages (generally yearly periods), the choice of the discount rate is a 
difficult and often controversial issue. 
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2.2.2. Deterministic dynamic models  

Deterministic dynamic models contain complete and perfect information on the future. 
All the model parameters, such as future prices, climate, yields, etc., are supposed 
«known» by the decision-maker. This type of model optimises decision-making that 
takes into account future costs and profits, by inter-temporal arbitration.  
 
 

2.2.3. Stochastic dynamic models  

2.2.3.1.  Single decision stochastic models  

These models contain knowledge of the future in terms of probabilities of states of 
nature and optimise a utility function. Uncertainty can be about some resource 
availability constraints or/and the objective function coefficients. Here, the usual 
techniques to model risk in dynamic models (mean-variance, chance-constrained 
programming, etc.) can be used. 
 
 

2.2.3.2.  Sequential decision stochastic models  

These models represent a sequential decision-making process. The information 
available to the model is introduced in steps, permitting progressive decision-making 
adjustment in the framework of a decision tree with branches at each decision step. 
 
 

2.3. Recursive models 

Recursive models (Day, 1961) are also dynamic models 1, since different decision stages 
are represented explicitly. The essential difference with inter-temporal optimisation 
models resides in their optimisation method. Rather than performing optimisation over 
the entire planning horizon, it is performed for each stage individually, though the 
results of stage t will influence the initial data in stage t + 1. Day originally developed 
this method to describe the process of adjustment between a real situation and an 
optimal one obtained after optimisation, with the aim of describing gradual adaptation 
to changes in exogenous parameters, by using what he called "flexibility constraints". 
The procedure was simple: given a certain level of rotation, for example, constraints are 
introduced that permit a difference of more or less 5% from this initial rotation. 
Repeating these constraints over several iterations leads the model to a situation in 
which they are no longer active, insofar as the initial rotation is reinitialised in each 

                                                 
1  Some authors consider only inter-temporal optimisation models as dynamic, though since an increasing number of 

recursive models are termed dynamic, we have chosen to consider them as belonging to the family of dynamic 
models. 
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iteration. Thus this is a way of introducing gradual and flexible adaptation towards a 
new equilibrium.  
 
Searching for market equilibrium with time lags (cobweb model) is a typical example of 
the recursive procedure.  
 
Many models called "dynamic" are actually recursive models, as defined here. This is 
so with dynamic general equilibrium models whose solution for one year is used to 
reinitialise the parameters used by the model the following year. In some agricultural 
sector models, the recursive procedure is used to define the equilibrium price and 
treasury flows between periods2. 
 
It is also possible to build a recursive model which, for each iteration, is composed of 
inter-temporal optimisation models, i.e. it is a sequence of dynamic models reinitialised 
after each optimisation by incorporating additional information. This information can 
be partially composed of the results of the first optimisation and be partially exogenous. 
Once the model has been reinitialised, it runs with a new planning horizon shifted by 
one stage. 
 
 
 

3. DYNAMIC OPTIMISATION PROBLEMS: RESOLUTION METHODS  

 
Here, we deal with the different methods of solving inter-temporal optimisation 
problems, giving emphasis to dynamic programming and mathematical programming 
techniques. Deterministic dynamic models and dynamic single decision stochastic 
models, as defined in the previous section, can be solved using similar methods. 
Consequently, we have decided to present them together as non-sequential dynamic 
optimisation problems (section 3.1). In these types of model, the sequence of optimal 
decisions is determined at the beginning of the decision process and no modification is 
made afterwards.  
 
In the dynamic sequential decision stochastic models presented in section 3.2, decisions 
are taken sequentially and the decision-maker can adjust them as and when he has 
additional information to enter. 
 
 

                                                 
2  This is the case of the CAPRI model (http://www.agp.uni-bonn.de/agpo/rsrch/capri/eaaecapri.pdf) and the MATA 

family of models ( http://www.adelaide.edu.au/CIES/iwp9808.pdf). 



 9 

3.1. The problem of non-sequential dynamic optimisation  

As said previously, from a management standpoint, natural resources are better viewed 
of as stocks of natural capital that provide a flow of services (Wilen, 1985). Thus the 
resource allocation problem consists in maximising the benefit obtained from using 
flows of resources through time, taking into account that current use can influence 
future availability. Therefore the problem of allocating natural resources is a dynamic 
problem. Consequently, optimal control theory provides the correct approach to natural 
resource management.  
 
In this paper analysis is limited to discrete time, finite horizon problems. These 
problems include a decision sequence through time and can be represented by a decision 
tree. Decisions taken for each stage influence the possible results for the following 
stages. This kind of optimisation is inter-temporal. 
 
Consider a simple problem of optimal allocation of a natural resource in a dynamic 
framework. For each period of time t, the system is described by a state variable (xt) 
and a control variable (ut); the former represents the stock of the resource while the 
latter represents the extraction decision. Let us suppose that we have an initial quantity 
of resource (x1), that the decisions on the use of the resource (ut) are taken at the 
beginning of each decision stage t and that the profit obtained in each stage is given by 
rt(xt,ut). 
 
The objective function to be maximised (profit or inter-temporal utility3) is generally 
expressed as a function of the first stage: 
 

[ ]),(,),,(),,(),,,( 222111111 TTTT uxruxruxrfuuxv KK =  (1) 

 
Equation (1) expresses that the current value of the resource (v1) is a function of the 
returns obtained throughout the planning horizon (t = 1,…,T). 
 
In a dynamic framework, the stock of the resource in year  t+1 is a function of both the 
decisions taken in year t and the autonomous progression of the resource from t to t+1. 
This relation of dependence is expressed by the equation of motion or transition 
equation:  
  

),(1 ttttt uxgxx =−+    

 
To simplify the problem, we make a certain number of hypotheses: 

                                                 
3   The problem of defining individual or social utility functions is extremely difficult and is not dealt with in this 

paper. 
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− the objective function is an additively separable function defined by the discounted 
sum of the returns obtained throughout the planning horizon, given that ρ is the 
discount factor; 

− functions rt and gt are assumed to be continually differentiable to the order two; and 

− the stock of the resource at the end of the planning horizon has a final value given 
by F(xT+1). 

 
The standard problem consists in determining the sequence of decisions (ut) that 
maximise the objective function by respecting the constraints:  
 

Maximize )(),( 1
1

1
+

=

− +∑ T
T

T

t
ttt

t xFuxr ρρ  (2) 

subject to Ttuxgxx ttttt ,,2,1),(1 K==−+  (3) 

 ( ) 11 xx =   (4) 

 
Therefore the problem consists in maximising the current value of the profits obtained 
throughout the planning horizon increased by the final value of the resource. 
  
Equation (3) is the equation of motion or transition equation that reflects that the stock 
of the resource through time is both a function of resource extraction and resource 
renewal. Bio-economic models are spoken of in the case where biophysical models are 
used to obtain functions gt(xt,ut) or rt(xt,ut). 
  
 

3.1.1. Analytical solution  

The analytical solution of the natural resource management problem given by equations 
(2) to (4) calls on optimal control theory. The principle of maximum defines the inter-
temporal optimality conditions of the optimal control problems. 
  
Functions rt and gt are assumed to be continuous and differentiable to the order two. The 
search for the optimum is done by introducing the Hamiltonian: 
 

),(),(),,( 11 ttttttttttt uxguxruxH ++ += λρλ  (5) 

In the framework of natural resource economics, the Hamiltonian can be interpreted as 
the total profit resulting from the use of the resource: the first part represents the profit 
in the current stage (t), whereas the second part represents the change in the value of the 
stock. The multipliers λt+1 represent the values (measured in t=1) given to an additional 
unit of stock xt+1 in stage t+1. 
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Maximising the Hamiltonian for each stage t therefore amount to maximising the 
objective function. Introducing the Hamiltonian permits transforming the problem of 
constrained optimisation into one free of constraints. 
 
The first-order conditions for profit maximisation are: 
 

Tt
u

g
u

r
u
H

t

t
t

t

t

t

t ,,10
)()(

1 K==
∂

⋅∂+
∂

⋅∂=
∂
∂

+λρ  (6) 

Tt
x

H

t
tt ,,2

)(
1 K=

∂
⋅∂−=−+ λλρ  (7) 

Ttg
H

xx t
t

tt .,1)(
)(

)(

1
1 K=⋅=

∂
⋅∂=−
+

+ λρ
 (8) 

)(1 ⋅′=+ FTλ    (9) 

1)1( xx =    (10) 

 
In equation (6), the right hand term is divided into two parts: the former is the marginal 
profit from using the resource in the current stage, whereas the latter part reflects the 
influence of the decision taken ut on the value of the resource over the remaining stages, 
i.e. the inter-temporal cost of resource extraction, or user cost. The shadow price λt+1 
reflects the increase of profit throughout the remaining stages if the stock of the 
resource increases by one unit (or the loss of profit throughout the remaining planning 
horizon due to the consumption of an additional unit in the current stage). 
 
Equation (7) indicates the change of Lagrange multipliers through time. Equation (8) is 
the transition equation while equations (9) and (10) are the boundary conditions (final 
and initial conditions). 
 
Equations (6) to (10) form a system of (3T+1) equations with (3T+1) unknowns: ut for t 
= 1,…T; xt for t = 2,…T+1 and λt for t = 1,…, T+1. It is not always possible to solve 
this system of equations simultaneously. Although the theory of optimal control is well-
suited for dealing with natural resource problems, if the extremes are not interior points, 
or the functions are not continuous and differentiable, no analytical solution is possible. 
In practice, it is usual to use resolution algorithms such as dynamic programming and 
mathematical programming. 
 
These methods of solving dynamic optimisation problems will be presented in what 
follows, with emphasis being given to possibilities of applying each method in the field 
of natural resource economics rather than to the resolution procedure.  
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3.1.2. Method of dynamic programming  

The dynamic programming method was developed by Richard Bellman during the 
1950's. It permits solving this type of problem, provided that the objective function is 
separable. 
 
By designating the optimal value of the resource stock in stage  t by Vt(xt) – i.e. the 
value of the resource when optimal decisions u*

t,  u*
t+1,…,u*

T have been taken – the 
problem consists in finding V1(x1): 
 

 [ ]),(,),,(),,(max)( 222111,,,11 21 TTTuuu uxruxruxrfxV
T

KK=  (11) 

 
If the objective function respects the conditions of separability, the multi-stage problem 
can be broken down into T one-stage problems by using the recursive relation: 
  

[ ] 1,1,)(),,(rmax)( 11t K−== ++ TTtxVuxfxV ttttutt t
 (12) 

 
In this equation Vt(xt) represents the optimal value of the objective function throughout 
the remaining planning horizon under optimal decisions. If the objective function is the 
sum of the discounted profits of each stage, the problem consists in determining the 
optimal sequence of decisions u*

1,…,u*
T which obeys: 

 
( )[ ] 1,,1,),(),()( 1 K−=++= + TTtuxgxVuxrmaxxV ttttttttutt t

ρ  (13) 

)()( 111 +++ = TTT xFxV   (14) 

( ) 11 xx =    (15) 

 
Functional equation (13) permits determining V(x t) once V(x t+1) is known. Since the 
final value is assumed as known, it is possible to determine the optimal value for stage 
T: 
 

( )[ ]1),()( ++= TTTTuTT xFuxrmaxxV
T

ρ  (16) 

 
Solving this equation for each possible value of the state variable (xT) allows us to 
obtain u*

t and VT(xT) and repeating this procedure for stages T-1, T-2,…, 1 permits 
solving the problem. 
 
In practice, the analytical resolution of the recursive relation (13) demands that 
functions Vt(xt) and rt(xt,ut) be differentiable and that an interior solution exists. If these 
conditions are not respected, the problem can still be solved by using numerical 
methods. However, numerical resolution limits the possible values of the state and 
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control variables to a discrete set for each stage t. Furthermore, any decision taken in 
stage t must lead to one of the possible values of xt+1. 
 
The numerical formulation of the problem can be interpreted as the search for an 
optimal path through a nodal network, since the characteristics of the optimal path are 
given by Bellman's principle of optimality (1957): «an optimal policy is one in which, 
whatever the initial state and initial decision, the following decisions must constitute an 
optimal policy in relation to the state resulting from the initial decision». The dynamic 
programming method permits obtaining a decision rule so that it is easy to determine 
the optimal trajectory for different initial conditions. 
 
Numeric dynamic programming is a very flexible method that permits the resolution of 
inter-temporal optimisation problems even when functions rt and gt are not continuous 
and differentiable. It permits obtaining a full decision rule, whereas other techniques, 
such as the multi-stage programming methods seen further on, only give solutions for 
specific initial conditions. 
 
Since the recursive  relation must be solved for all the values related to the state 
variables, the main disadvantage of this model is that its size explodes when the number 
of state variables increases (the «curse of dimensionality»). 
 
Many applications of this method exist in the field of agricultural and natural resource 
economics. Kennedy (1986) wrote a detailed review on this subject. 
 
 

3.1.3. Mathematical programming method  

The problem of dynamic optimisation can also be solved as a constrained optimisation 
problem, by using mathematical programming techniques. 
 
With this method, state and control variables are defined as activities while the 
transition equations are defined as multi-period constraints that link the stages together. 
Mathematical programming permits obtaining an optimal solution, given the constraints 
and the objective function. Non- linear programming algorithms and techniques now 
exist that allow incorporating uncertainty not only in the objective function, but also in 
the constraints. 
 
Whereas the dynamic programming method solves problems recursively, by backward 
induction, the mathematical programming method consists in solving all the following 
equations simultaneously, by using one of the existing algorithms: 
 
 

Maximize )(),( 1
1

1
+

=

− +∑ T
T

T

t
ttt

t xFuxr ρρ  (17) 
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subject to Ttuxgxx ttttt ,,2,1),(1 K==−+  (18) 

 ( ) 11 xx =   (19) 

 
The mathematical programming method permits incorporating in the model the 
diversity of activities and constraints specific to decision-making in agriculture. The 
advantages of this method are considerable in comparison to dynamic programming 
when the problem is deterministic or when stochastic components can be approached 
with the non-sequential techniques used in risk programming. 
 
Although dynamic programming remains the technique used most often for solving 
dynamic optimisation problems, several authors emphasise the advantages of 
mathematical programming when incorporating the interdependencies between the 
different resource allocation decisions in the model (Standiford and Howitt, 1992; Yates 
and Rehman, 1998). 
 
The mathematical programming method permits working with continuous variables and 
incorporating all the activities and constraints considered necessary. Nevertheless, it is 
not always possible to obtain a global maximum for very complex non-linear models. 
This difficulty could be overcome by using genetic algorithms (Cacho, 2000). 
 
  

3.2. Problem of sequential dynamic optimisation  

The problem becomes stochastic if the state variables and/or the results of each stage 
depend not only on the state of the system and the decisions taken, but also on random 
variables that the decision-maker cannot control. 
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Generally, a sequential stochastic decision problem can be represented by a decision 
tree. For example, Figure 1 represents a problem with three decision stages and two 
states of nature. 
 

u1

k1

k2

k1

k2

k1

k2

Z311

u21

u22

Z312

Z321

Z322
u322

u321

u312

u311

 
Figure 1.  Decision tree (three decision stages and two states of nature). 
 
 
The diagram shows that by starting from an initial state of the system (represented by a 
small square), the farmer takes decisions in stage 1 (u1). Later, according to the state of 
nature occurring (k1 or k2), the farmer can take other decisions (u21 is, for example, the 
decisions taken in stage 2, taking into account the state of nature k1).  
 
In sequential stochastic problems, one of the objective functions used most frequently is 
the mathematical expectation of total discounted profit4: 
  

{ }[ ]),,(,),,,(),,,()( 2222111111 TTTT kuxrkuxrkuxrfExv K=  (20) 

 
Let us suppose that random variables (kt) take different discrete values in each stage t 
with associated probabilities pt(kt), and that the objective function is the expected 
present value. By hypothesising that the problem can be written as a Markovian 
decision process, i.e. that the state of the system in stage t+1 only depends on  xt, ut and 
kt, the problem is written as: 
 

Maximize [ ] )(),,( 1
1

1
+

=

− +∑ T
T

T

t
tttt

t xFkuxrE ρρ  (21) 

subject to 1,,2,1),,(1 −==−+ Ttkuxgxx tttttt K  (22) 

 ( ) 11 xx =   (23) 

 
given that: 

                                                 
4  In the case where the decision-maker is not considered risk-neutral, other objective functions can be proposed. 
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[ ] ∑=
k tttttttttt kuxrkpkuxrE ),,()(),,(  (24) 

 
As seen further on, this problem can be solved by using dynamic programming or 
discrete stochastic programming. 
 
 

3.2.1. The stochastic dynamic programming method  

The stochastic dynamic programming method (SDP) permits breaking down the inter-
temporal optimisation problem into T single stage problems. The problem consists in 
solving the recursive relation: 
 

[ ] ( ){ } 1,,1,),,(),,()( 1 K−=++= + TTtkuxgxVkuxrEmaxxV ttttttttttutt t
ρ  (25) 

subject to: 
)()( 111 +++ = TTT xFxV   (26)  

∑ =
k tt kp 1)(   (27) 

( ) 11 xx =    (28)  

 
As in the deterministic case, the recursive relation permits solving the problem by 
starting with the last stage and working backwards, stage by stage, to the initial stage. 
One of the great advantages of dynamic programming is that it permits treating 
deterministic and random processes similarly. 
 
Applications of this technique to agriculture decision problems have been reviewed by 
Taylor (1993). 
 
 

3.2.2. The discrete stochastic programming method  

Discrete stochastic programming (DSP) can be used to process sequential decision-
making problems in discrete time with a finite horizon when the state and control 
variables are continuous. This approach was developed by Cocks (1968) and then Rae 
(1971a). 
 
The DSP method requires that the problem be formulated as a problem of constrained 
optimisation. Equations are solved simultaneously by using a mathematical 
programming algorith. Although the notation of stochastic programming models is 
complicated, they are relatively simple conceptually. The logic of this technique can be 
understood from the formulation of a model with two decision stages: 
 

Maximize [ ]∑ +
k kkkk uxruxrp ),(),( 222111 ρ  (29) 



 17

subject to ),( 1112 uxgxx k =−  (30) 

 0, 21 ≥kuu   (31) 

 
where sub-indices 1 and 2 represent the two decision stages, k the state of nature, and pk 
the vector of probabilities of states of nature. 
 
This formulation of the model implies that the agent takes several initial decisions (u1) 
with uncertain knowledge of the future. This is followed by one of the states of nature 
(k) and the agent will take other decisions (u2k) later on that depend on the decisions 
made in the first stage and the state of nature having occurred. 
 
Discrete stochastic programming models have been used by Rae (1971b) to model 
decision-making in agriculture. They are very flexible and do not require the utility 
function to be separable; moreover, they permit considering the different sources of risk 
that influence the objective function and the constraints. However, they are often very 
large and need considerable amounts of data, thus few DSP applications exist to date. 
See Apland and Hauer (1993) for a review of the applications of this method. 
 
 
 

4. RECURSIVE STOCHASTIC PROGRAMMING: A NEW METHOD OF 
SOLVING DYNAMIC PROBLEMS?  

 
In practice, the methods for solving the inter-temporal optimisation problems mentioned 
above suffer from major limitations. Despite the existence of powerful algorithms 
capable of tackling these problems, the model's variables and/or stages must always 
remain small in number. 
 
Despite the fact that a large number of decision stages  can be considered using the 
dynamic programming method, since the multi-stage problem in question is broken 
down into several one-stage problems, the number of state and control variables must 
remain limited. In practice, this technique requires limiting the possible values of the 
model's state and control variables to a discrete set. The solutions obtained are therefore 
approximate and the degree of precision will depend on the differences between the 
values inside the discrete set. In the case of non- linear functions, the errors can be non-
negligible. Furthermore, all the decisions made in the current stage must lead to a 
"possible" state of the system in the following stage, sometimes requiring that other 
approximations be made.  
 
Undoubtedly, the most serious disadvantage of dynamic programming is the difficulty 
of considering the diversity of activities and constraints specific to the field of 
agricultural and natural resource economics. 



 18

  
On the contrary, discrete stochastic programming permits simultaneously taking into 
account the uncertainty and the diversity of activities and constraints specific to 
agricultural decision problems. DSP permits working with continuous variables and 
non- linear functions 5. Nonetheless, its application remains limited to problems with a 
low number of stages. Since optimisation is inter-temporal, the model's size increases 
exponentially with the number of decision stages. 
 
In the previous models, the decision-maker makes decisions by taking into account their 
consequences on the future. This entails inter-temporal optimisation under uncertainty 
and irreversibility. It can be likened to a game of chess: the player takes into account the 
possible reactions of his adversary and his own counter-reactions in full knowledge of 
the rules.  
 
This leads us to raising the question of whether the rules are as well known in natural 
resource economics, i.e. does the agent have full knowledge about the possible 
responses of nature? 
 
By making the hypothesis that the decision-maker is perhaps more myopic than the 
dynamic programming would like, we propose another method of solving dynamic 
problems. The main difference of this method in comparison to the previous ones is the 
way the information enters the problem. In this case, the decision-maker does not have 
all the information available when making decisions; hence he is unable to fully 
anticipate the responses of nature and must opt for a sub-optimal decision. Once the first 
decision has been carried out, the system evolves (the decision-maker knows the 
response of nature) and the agent can adjust later decisions according to the new 
information available. 
 
The method consists in solving the dynamic problem by making a series of sequential 
optimisations, thus it is a recursive method where each optimisation comprises a 
dynamic model. 
 
Consequently, at moment 1, the decision-maker chooses a decision plan by taking into 
account all the information available at this moment. At moment 2, the decision taken 
for the first stage (u1) has already been carried out and, as a function of the state of 
nature happened, the system will have progressed to reach state x2k. The agent can now 
revise the decision plan, not for stage 1 but for the following stages depending on the 
new information available. This procedure is illustrated by the following diagram: 
 

                                                 
5 Obtaining a global maximum cannot always be achieved by using available non-linear programming algorithms, 

though it can be obtained by adequate formulation of the problem. 
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Figure 2.  Diagram of the recursive stochastic programming method  
 
 
The first iteration therefore consists in solving the optimisation problem given by 
equations: 
 

Maximize )(),( 1
1

1
+

=

− +∑ T
T

T

t
ttt

t xFuxr ρρ  (32) 

subject to Ttuxgxx ttttt ,,2,1),(1 K==−+  (33) 

 ( ) 11 xx =   (34) 

 
In this case, function gt(xt,ut) does not depend on the state of nature happened, rather it 
has a definite value resulting, for example, from taking into account the mathematical 
expectation of random variable k. 
 
Once the solution has been obtained, we will only take into account the result for the 
first stage, u1, and we will determine the state of the system in the following stage for 
each state of nature k : 
 

Kkkuxhxx k ,...2,1),,( 111
*

1112 1
==−  (35) 

 
The second iteration consists in solving a series of optimisations, one for each initial 
state of system x2k: 
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Maximize 11
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subject to Ttuxgxx ttkttkkt ,,2,1),(
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 ( ) 12 1
2 kxx k ∀=  (38) 

 
This process is repeated T times and the solution to the problem is obtained by retaining 
the result for the first stage at each iteration: 
 

,...),,( 213
*

2
*

1
**

kkk uuuu =  (39) 

 
As will be seen in what follows, in the case of simple models this technique gives the 
same results as the two previous ones, while permitting taking into account a large 
number of variables and decision stages. However, the sequence of optimal decisions in 
more complex problems will be different. 
 
This method has major advantages when the system must be represented by a 
considerable number of state variables or in the case of a large number of possible 
activities (reservoir management, irrigation management, soil erosion, etc.). 
Furthermore, it allows the introduction of exogenous changes other than stochastic 
resource availability. 
 
This type of model permits a sequential representation of decision-making by assuming 
that decisions are irreversible, as in sequential decision stochastic models. A decision 
tree can be modelled similar to that used in sequential decision stochastic models. This 
type of model permits getting round the curse of dimensionality and solve a problem 
with many variables and decision stages. 
 
Several applications of recursive models with multi-stage components have been 
described in the literature (Louhichi et al., 1999; Cacho, 1998 and 1999). However, the 
objective of recursivity in these models is not to represent the sequential stochastic 
nature of the problem, but to permit exogenous changes of some of the model's 
parameters. What is original in this work is that it proposes using recursive 
programming as a method for solving sequential stochastic problems. 
 
We could go even further and consider a problem with two different decision horizons: 
a short-term horizon and a long-term one. We can, for instance, introduce a more 
thorough modelling of the nearest stages and reduce details as distance increases 
through time. 
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To illustrate this procedure, imagine that we wish to model an agricultural decision 
process in a context of climatic uncertainty. We can assume that long-term decisions 
(e.g., investment decisions) are taken according to the probability of the occurrence of 
states of nature. Nonetheless, the farmer can make adjustments (amount of fertiliser, 
irrigation, etc.) throughout the year. To model this behaviour, we can build a multi-stage 
model whose first stage of simulation is divided into several sub-stages. Decisions 
throughout the year are taken sequentially as a function of the state of nature occurring. 
Investment decisions are taken at the beginning as a function of the probabilities of 
states of nature throughout the planning horizon. 
 
Since we have to repeat this procedure by using a sliding planning horizon, the model is 
formulated to adjust the decisions taken for the following years. 
 
 
 

5. A NUMERICAL EXAMPLE 

 
Comparison between the different methods of solving dynamic optimisation problems 
can be shown by using the crop- irrigation problem proposed by Kennedy (1986). In this 
example, a farmer produces three horticultural crops each year in successive seasons, 
i.e. each crop occupies the soil for three months. The yield of each crop (yt) depends on 
the depth (cm) of water applied (wt) according to relation yt = wt - 0.1 wt². The farmer 
has a small reservoir for irrigation whose stocks of water vary as a function of 
consumption and rainfall during each season. The depth of water applied to each crop 
depends on the water released from storage at the beginning of each season (ut, in 
metres) and the rainfall occurring during this season (qt), i.e. wt = ut + qt. 
 
The maximum level of water in the reservoir is 3 metres and it is assumed to be full at 
the beginning of the year. The amount of water which can be released at the beginning 
of each season is limited do integer values (metres of water) and by the amount in 
storage. 
 
The farmer seeks to determine water release in each season (ut) so as to maximise the 
present value of receipts from sale of the crops. Thus it is a dynamic problem with three 
decision stages, where the water used in each stage (ut) is the control variable while the 
water stock (xt) is the state variable. 
 
We approach the deterministic problem first before going on to the stochastic version in 
which the rainfall of each season is a random variable. 
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5.1. The deterministic dynamic model  

As mentioned above, the farmer seeks to determine the quantity of water released from 
the reservoir in each stage (ut) in order to maximise the current value of the farm's 
revenue (V1). Since bt is the price of the crop corresponding to stage t, the revenues of 
the farm in this stage (rt) are: 
 

[ ]2)(1.01.0 tttttt ququbr +−+=  (40) 

 
Given that ρ is the discount factor, the problem is written as: 
 

Maximize ∑
=

−
3

1

1

t
t

t rρ   (41) 

subject to integers,30 tttt xuxu ≤≤≤  (42) 

 { }3,)(1 tttt quxminx +−=+  (43) 

 31 =x   (44) 

 
given that b = [50, 100, 150] 

 q = [2, 1, 1] 

 ρ = 0.95 

 
This problem can be solved indifferently by dynamic programming and mathematical 
programming. 
  
By using dynamic programming, we can express the backward recursive relation as: 
 

{ } 1,2,3)(max)( 11
0
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≤≤

txVrxV ttt
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ρ  

 
And the problem consists in solving this equation with the conditions: 
 

tttt quxx +−=−+1  

0)( 44 =xV   

 
By starting with the last stage: 
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we can determine the optimal decision u*
3 and value V3(x3) for the different possible 

values of x3. Then, on the basis of equation: 
 

{ } [ ]{ })()(1.01.0)()( 33
2

2222233222
22

xVququbmaxxVrmaxxV
uu

ρρ ++−+=+=  

 
we obtain u*

2 and V2(x2) for the different possible values of x2. Lastly, equation: 
 

{ } [ ]{ })()(1.01.0max)(max)( 22
2

1111122111
11

xVququbxVrxV
uu

ρρ ++−+=+=  

 
allows us to determine u*

1 and V1(x1) for the different possible values of x1. This 
resolution procedure leads to the following results: 
 
 

Decision stage 
t 

State variable 
x t 

Control variable 
ut 

Current value 
Vt(xt) 

1 3 2 60.4 
2 3 2 50.9 
3 2 2 31.5 

Table 1.  Results of the deterministic problem  
 
This procedure allows us to determine the optimal decision path for other initial water 
levels. 
 
The same results can be obtained by using a non- linear programming algorithm6. 
 
 

5.2. Stochastic dynamic model  

Consider now a stochastic version of the crop- irrigation problem introduced in last 
section. Let us suppose that rainfall in each stage, which influences both crop yields and 
water stocks in the reservoir, is a random variable (q) and that three states of nature can 
be distinguished (k): 
 

State of Decision stage 
nature 1 2 3 

k p1(k1) q1k p2(k2) q2k p3(k3) q3k 

1 0.25 1 0.25 0 0.25 0 
2 0.50 2 0.50 1 0.50 1 
3 0.25 3 0.25 2 0.25 2 

Table 2.  Distribution of rainfall probability  

                                                 
6  All the models have been solved by using the GAMS software. 
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Note that expected rainfall in each stage is the same as for the deterministic problem. 
 
In this case, for each stage t, the revenue from the farm depends on the state of nature 
occurring in stage t-1: 
 

[ ]2)(1.01.0 tkttktttk ququbr +−+=  (45) 

 
Supposing that the objective function is the expected discount value, the problem can be 
written as: 
 

Maximize ∑ ∑
= =
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t k
tktk

t rpρ  (46) 

subject to integers,30 tttt xuxu ≤≤≤  (47) 

 ktttt quxx +−=−+1  (48) 

 31 =x   (49) 

 
This problem can be solved by backward induction by using stochastic dynamic 
programming, or as an constrained inter-temporal optimisation problem by using 
discrete stochastic programming. Further on we comment on these methods and on 
resolution by recursive stochastic programming. 
 
 

5.2.1. Resolution by stochastic dynamic programming  

 
In this case, we simply need to write the backward recursive relation: 
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with the transition equation and boundary conditions: 
 

tkttt quxx +−=−+1  

0)( 44 =xV  

31 =x  

 
Since the final value is known, it is possible to determine the optimal decisions in the 
third stage for each possible value of x3 from: 
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which allows us to determine the optimal decisions in the second stage by solving: 
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and the decisions in the first stage by repeating this process. Now, starting from the 
system's initial state (x1=3), we can obtain the sequence of optimal decisions for each 
stage as a function of the state of nature occurring. 
 
 

Stage Less favourable More favourable More probable 

t 
Rainfall 

qt 
State 

x t 
Control 

ut 
Rainfall 

qt 
State 

x t 
Control 

ut 
Rainfall 

qt 
State 

x t 
Control 

ut 

1 1 3 2 3 3 2 2 3 2 
2 0 2 1 2 3 2 1 3 2 
3 0 1 1 2 3 3 1 2 2 

Current 
value 

31.2 69.1 60.4 

Table 3.  A few results of the stochastic problem (dynamic programming) 
 
 
Obviously, the objective function optimal value will be less in the stochastic case (57,1) 
than in the deterministic formulation of the problem (60,4). Table 3 shows the results 
for the series of "less favourable", "more favourable" and "more probable" rainfalls. 
 
 

5.2.2. Resolution by discrete stochastic programming  

We shall now solve the example as an constrained inter-temporal optimisation problem. 
 
Notation becomes more complex, because the state and control variables depend on the 
states of nature occurring in the past; the model is not solved recursively but by an 
optimisation algorithm. In our example, although the decision to be taken in the first 
stage (u1) does not depend on states of nature, that of the second stage (u2k) will depend 
on the state of nature occurring in the first stage, while that of the third stage (u3km) will 
depend on the states of nature in the two previous stages. 
 
To simplify notation, we designate the possible states of nature in stage 1 by k, those of 
stage 2 by m and those of stage 3 by n. The formulation of the discrete stochastic 
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programming problem requires differentiating the state and control variables for each 
decision stage. In our example: 
 

Decision stage State variables Control variables 
1 x1 u1 
2 x2k u2k 
3 x3km u3km 
4 x4kmn  

  
The farm's revenues in each stage are: 
 

))(1.0(1.0 2
111111 kkk ququbr +−+=  (50) 

))(1.0(1.0 2
22222 mkmkkm ququbr +−+=  (51) 

))(1.0(1.0 2
333333 nkmnkmkmn ququbr +−+=  (52) 

 
For each possible path (for each branch of the decision tree), the current value of the 
farm's revenues will be: 
 

kmnkmkkmn rrrVA 3
2

21 ρρ ++=  (53) 

 
Since we attempt to maximise the expected present value, the problem is written as: 
 

Maximize ∑∑∑
= = =

3

1

3

1

3

1k m n
kmnnmk VAppp  (54) 

subject to kk quxx 1112 +−=  (55) 

 mkkkm quxx 2223 +−=  (56) 

 nkmkmkmn quxx 3334 +−=  (57) 

 3;3;3 332211 ≤≤≤≤≤≤ kmkmkk xuxuxu  (58) 

 31 =x   (59) 

 
with non-negativity conditions for the variables. 
 
The results obtained with this method are the same as those obtained with the dynamic 
programming method. The main difference is that dynamic programming permits 
obtaining the optimal sequence of decisions for any initial state of the system, whereas 
discrete stochastic programming only gives the solution for x1 = 3: 
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Figure 3.  Decision tree of the stochastic problem  
 
 
  

5.2.3. Resolution by recursive stochastic programming  

This method consists in solving a series of inter-temporal optimisation problems. 
 
In the first iteration, we make the hypothesis that the agent reasons in terms of expected 
rainfall values. Thus we solve the problem by: 
 

Maximize ∑
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t
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t rρ   (60) 

subject to integers,30 tttt xuxu ≤≤≤  (61) 
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Once the first decision has been carried out (u*
1), uncertainty related to the rainfall of 

the first stage will be cleared (one of the possible states of nature qk will occur), which 
will affect both the revenues generated r*

1k and the state of the system at the beginning 
of the second decision stage (x*

2k). These relations are given by the following 
recursivity equations: 
 

[ ]2
1

*
11

*
11

*
1 )(1.01.0 kkk ququbr +−+=  (64)  

kk quxx 1
*
11

*
2 +−=   (65) 

 
The agent will find himself in one of the states of nature x*

2k with a probability pk 
instead of finding himself in the state expected x2. The agent can revise his decisions for 
the following stages as a function of the state reached for the system (which will depend 
both on the decisions taken and on the rainfall during the stage). 
 
The second iteration permits determining the optimal decisions throughout the 
remaining planning horizon given the state of the system and the expected rainfall 
values. The second iteration therefore consists in solving the dynamic problem shifted 
by one stage for each initial value x*

2k: 
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We shall now only take into account the results obtained for the second stage (u*

2k) and 
determine the revenues generated r*

2km  and the state of the system at the beginning of 
the following stage (x*

3km) as a function of the state of nature having occurred (m): 
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The third iteration permits determining the optimal decisions throughout the remaining  
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planning horizon given the state of the system (x*
3km) and the expected rainfall values 

(cf. Figure 4). 
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Figure 4.  Diagram of the resolution by recursive stochastic programming  
 
 
In our example, the results obtained with recursive stochastic programming coincide 
with the results obtained with the previous methods. This is not, whatever the 
circumstances, the general case since the problem's information structure is different. In 
fact, when the solution to the stochastic problem is obtained by using continuous and 
non-discrete state and control variables, the results are not the same. The discrete 
stochastic programming model gives an expected value of 57.258, whereas the recursive 
stochastic programming model gives 57.18. Nonetheless, it should be borne in mind that 
this value is close to that obtained with discrete variables (57.1). 
 
On reaching this point, the reader may ask, "What is the point of using this "forward" 
recursive method instead of the "backward" recursive method? The advantage of this 
method is that it does not require using discrete values for state and control variables 
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and it allows us to incorporate a large number of variables and equations into the model. 
We try to clear up this point in the next section. 
 
 
 

6. A SLIGHTLY MORE COMPLEX EXAMPLE 

 
In what follows we present a slightly more complex example. It also entails modelling 
inter-temporal allocation decisions concerning irrigation water in a context of stochastic 
water availability. 
 
The problem is to determine the optimal price of irrigation water for an irrigation 
district so that farmers can take into account the value of the resource's scarcity. The 
water comes from a reservoir whose annual replenishment is highly variable and 
uncertain. Obviously, the demand for water in any year cannot exceed the water 
available in the reservoir during this stage. If the demand for water is less than its 
availability, the water is stored in the reservoir and can be used in future years.  
 
To simplify the problem, we represent the irrigation district by a single representative 
farm. In each crop year, the producer allocates the available surface and water to a 
number of crops so as to maximise a certain objective function (profit). We assume that 
all the model's coefficients are known and that only replenishment of the reservoir with 
water is random (see Blanco, 1999, for a detailed explanation).  
 
 
 

6.1. Non-sequential model  

We can model the reservoir's inter-annual management by using a non-sequential 
model. In this case, we suppose that all the decisions are taken at the same time. 
 
Given the system's objective function and constraints, the farmer attempts to determine 
the optimal decisions of production, investment in irrigation technology and water use 
in each decision stage. 
 
The main decision variables are production activities (vector Xcrit) and activities of 
investment in irrigation technology (vector Yrt). Each production activity is defined as a 
crop (c) with an irrigation technique (r) and an water allocation (i) during one year (t). 
The irrigation technology investment activities correspond to the purchase of irrigation 
equipment for the farm. 
 
The problem is expressed algebraically as follows: 
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NPV: net present value  
Zt: total income of the irrigated farm during stage t (ptas), 
ta: discount rate  
Xcrit: surface allocated to each production activity (ha), 
S: total surface area of the farm (ha), 
ecr: requirements for irrigation equipment r of activity c, 
Nrt: level of irrigation equipment of type r (ha), 
Yrt: surface area equipped for irrigation with technique r (ha) during stage t, 
qcri: water requirement per production activity c (m3/ha), 
Qt: water released from the reservoir during stage t (m³), 
Rt: replenishment of the reservoir during stage t (m³), 
Dt: water availability at the beginning of stage t (m³) 
h: water distribution efficiency coefficient. 
 
The model maximises the net present value (equation 72) subject to constraints on land 
(equation 73), irrigation equipment (equation 74), water use (equation 76), transition 
(equations 75 and 77) and initial conditions (equation 78). The model includes other 
activities and constraints (financing, crop rotations, market constraints, etc.) that we 
have obviate to simplify the presentation. 
 
Although replenishment of the reservoir is a random variable (R), we can introduce this 
uncertainty on water availability in a non-sequential model in two ways: 
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è By supposing that the farmer reasons in terms of average replenishment. In this 
case, the value of annual replenishment (Rt) will be given by the expected value of 
random replenishment (R): 

 
[ ]RERt =  

 
è By supposing that the farmer takes his decisions in order to guarantee a certain level 

of security. In this case, we can use chance constrained programming, thus the 
annual replenishment (Rt) to be considered in the model will be: 

 
[ ] Rt KRER σα−=  

 
For example, if the farmer decides the production plan that can be carried out in at 
least 90% of cases, the annual replenishment value will be equal to replenishment 
representing 90% security: 
 

[ ] Rt RER σ28.1−=  

 
The non-sequential model (deterministic or chance constrained) does not permit 
modelling inter-annual management decisions. Since replenishment with water is 
constant for all the years, these models provide a static solution in which the quantity 
released every year is equal to the replenishment value. 
 
 

6.2. Sequential model  

A sequential formulation must be used if we wish to model water storage decisions in 
order to overcome situations of scarcity. 
 
Specifying the information structure is an essential step in formulating the stochastic 
sequential decision problem. In our example, the producer takes irrigation technology 
investment decisions and surface allocation to the crops before having complete 
information on water availability. Once the availability of water is known, later on, it 
will be possible to make certain adjustments (the farmer can decide on the quantities of 
water to be allocated to the crops). 
 
The only source of uncertainty that we take into consideration is water reservoir 
replenishment. We define states of nature as different levels of replenishment of the 
reservoir (which reproduce the probability distribution) with associated probabilities, 
and we suppose that the probability of occurrence of each state of nature is independent 
from the state occurring in the previous stage. To simplify the problem, we have only 
considered three states of nature. 
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Consequently, at the beginning of the year, the farmer will decide the production plan as 
a function of his expectations of water availability. Once the availability of water is 
known, he can adjust the allocations of water to the crops. 
 
The decision tree of this problem is similar to that of figure 3 though the number of 
decision stages has now been increased to 12 (12 years). The number of the tree's 
branches will therefore be 312, i.e. 531441. Consequently, solving this problem by 
discrete stochastic programming is impractical. It can be solved by dynamic 
programming, but achieving this requires discretizing the values of variables Q, D and 
R and solving thousands of optimisation problems to determine a profit function 
depending on water use.  
 
Another method would be recursive stochastic programming. In this case, we suppose 
that the farmer reasons in the long term (investment decisions) as a function of the 
expected reservoir water replenishment values, whereas, in the short-term, the farmer 
can make adjustments (allocations of water to crops). 
 
In practice, the method involves dividing the first year into two decision steps: in the 
first step, the farmer decides the investments and the production plan; in the second step 
once the replenishment value is known, the farmer adjusts the allocations of water to the 
crops. 
 
The first iteration consists in solving: 
 

Maximize [ ] 
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where: 
Ztk: the total income of the irrigated area in stage t and state of nature k (ptas), 
pk: probability of occurrence of state of nature k, 
X1cr: surface area allocated to each production activity (ha) in the first decision step, 
X2critk: surface area allocated to each production activity (ha) in the second decision 

step, 
Qtk: quantity of water released from the reservoir in state of nature k (m³), 
Dtk: water availability in state of nature k (m³), 
Rkt: reservoir replenishment in state of nature k (m³), 
 
Once the solution to this problem is obtained, we take into account the result of the first 
stage and use the relations of recursivity  to determine the initial state of the system for 
the second iteration: 
 

 ( ) 2
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1

*
1

*
12 rrrrrt NAYNtN =−+==  

 ( ) kkktk DRQDtD 2
*
1

*
112 =+−==  

 
Afterwards we solve the model with a planning horizon shifted by one stage, by taking 
as starting point the initial values Nr2 and D2k. In the second iteration, we obtain the 
decisions to allocate resources in the second stage. 
 
We repeat this process to obtain the optimal decisions for the remaining stages. 
 
This approach has two advantages in comparison to non recursive methods: 
 
Ø A practical advantage, since it avoids the curse of dimensionality, which occurs 

when using both discrete stochastic programming and dynamic programming. 
 
Ø A methodological advantage, in terms of using a more realistic representation of 

the decision-making process, because with this approach we take a less "clear-
cut" view of the future. Our decision-maker is not a "champion chess-player" as 
is implied by dynamic programming or discrete stochastic programming. 
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