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A B S T R A C T   

Despite the growing societal demands to reduce pesticide use, public policies struggle to reverse the current 
upward trend. Agroecology emerges as a promising solution, as it promotes ecological regulation and sustainable 
practices. The systemic nature of the agro-ecological transition requires the development of an interdisciplinary 
approach. In this respect, models integrating ecological, economic, and social aspects are valuable for under-
standing the dynamics of agroecosystems. The objective of this article is to investigate the trajectories of change 
in the pesticide practices of agricultural territories taking into account ecological and economic dynamics. We 
built a socio-ecological modeling framework of a socio-ecosystem at the territorial scale. This generic agent- 
based model is developed to simulate both farmers’ decision-making (based on its own profit and that of 
others, and its willingness to change) and disease dynamics (based on the inoculum, the probability of infection, 
the probability of disease escape, and the previous disease). We first used the model to simulate the impact of 
different economic or ecological territorial characteristics on the trajectories of agricultural practices in the 
territory. Second, we aimed to analyze the final states of the territories (at equilibrium) based on scenarios of 
variations in the economic (the cost of pesticides), ecological (the dispersal capacity of the disease), and agro-
nomic (the ability to escape the disease of no-input farming) parameters. The final states of the territories were 
analyzed using four categories of indicators (farming practices, the profits, the number of infected fields and the 
use of fungicides). The study revealed strong threshold effects, non-linear effects and linear effects, on the 
number of farmers performing the different practices in the territory. These effects are highlighted respectively 
for the scenarios of increased cost of pesticides, increased disease escape of no-input farming and increased the 
disease dispersal. Our results highlighted the need to take into account combinations of levers and to study 
trajectories of change in order to promote sustainable agriculture. Finally, we discussed the possibility of using 
such models to guide public policies in favor of agroecology.   

1. Introduction 

Global pesticide use has increased over the last 30 years (FAO, 2022; 
Özkara et al., 2016), even though they are recognized to cause various 
environmental and health problems (Aktar et al., 2009; Frische et al., 
2018). Although pesticide reduction is a strong societal demand and a 
necessity in order to preserve human health and biodiversity, public 
policies in several countries are struggling to reverse the current upward 
trend (Mesnage and Séralini, 2018). At the European level, fundings has 
been devoted to pesticide reduction for more than 15 years (European 
Parliament and Council, 2009). However, the Nature and Human 

Foundation (Faraldo et al., 2022) reports that despite allocating 11 % of 
European funding to reduce pesticide use, only 1 % of this funding is 
estimated to effectively contribute to achieving this objective. In many 
cases, the subsidies do not necessitate the implementation of concrete 
changes or are not proportionate to the environmental demands (Far-
aldo et al., 2022). 

Agroecology offers a promising solution to decrease pesticide use 
(Altieri et al., 2015; De Schutter, 2012; Holt-Giménez and Altieri, 2012). 
Its implementation on their farms depends on the farmers’ individual 
choices (Catalogna et al., 2018). However, the desired effects are also on 
a territorial scale (Altieri et al., 2015). For example, the agroecological 
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practices of increasing plant diversity in plots and agricultural land-
scapes by integrating crops and semi-natural elements can promote 
ecological regulation (Barberi, 2002; Frison et al., 2011; Malézieux 
et al., 2009; Obrycki et al., 2009; Wezel et al., 2014). This helps to limit 
the territorial process of the spread of disease (Bebber et al., 2014) and 
therefore to reduce farmers’ dependency on pesticides. The diversity of 
interactions between organisms in agroecosystems results in multiple 
ecological functions, particularly pest regulation (Altieri, 2018). 

In addition to ecological interactions, agroecosystems along with the 
agroecological transition encompass various environmental, economic, 
and social aspects that interact in a non-linear and complex way 
(Darnhofer et al., 2010; Gunderson and Holling, 2002; Wezel et al., 
2020). Achieving the reduction of pesticide use in agroecosystems re-
quires the simultaneous consideration of these interconnected aspects 
(Lescourret et al., 2015; Rebaudo and Dangles, 2013). It includes un-
derstanding farmers’ decision-making in response to ecological, eco-
nomic, and social factors (e.g., level of disease in the field, pesticides 
prices, networks of actors in territories), which can shed light on rele-
vant levers for the agroecological transition (Meunier et al., 2024). 
Furthermore, the territorial level is a promising level of implementation 
(Wezel et al. 2016). Conceived at the landscape scale, agroecological 
principles require collective actions that involve multiple actors and 
require the mobilization of economic and social levers. This is visible for 
example with the implementation of hedges, whose effects increase 
when management is done collectively on a territorial scale (Mont-
gomery et al. 2020). The application of agroecology to the design and 
management of sustainable agroecosystems brings sustainability to all 
components of food systems (Gliessman, 2018; Wezel et al., 2020, 
2014). The systemic nature of the agro-ecological territorial transition 
requires the development of an interdisciplinary approach. In this 
respect, models that integrate the dynamics of the ecological, economic, 
and social aspects of agroecosystems at the territorial level are relevant 
tools for simulating trajectories of change. In particular, 
simulation-based tools such as agent-based modeling have been proven 
to be particularly appropriate for studying the complex interactions 
between components (Müller-Hansen et al., 2017; Schulze et al., 2017). 

Regarding ecological aspects, agroecosystem modeling has been 
used to characterize ecologically optimal landscape mosaics for pest 
regulation (Gaudio et al., 2022; Malard et al., 2020; Tixier, 2020). This 
modeling approach has also led to a better understanding of the links 
between planned biodiversity (i.e., biodiversity intentionally chosen by 
the farmer) and biological regulation (i.e., all the interactions and 
transformations within the biotechnical systems of the agroecosystem). 
For instance, models have been developed to study biological regulation 
in field crop landscapes, which depend on crop diversity and the density 
of semi-natural elements in the agricultural landscape (for an overview, 
see Begg et al., 2017; Le Gal et al., 2020; Précigout and Robert, 2022; 
Rusch et al., 2016). These studies showed that models can be useful tools 
for understanding and quantifying the impacts of agroecological prac-
tices on epidemic dynamics and associated yields as well as for pro-
posing ecologically optimal mosaics for regulating pests or maximizing 
yields. 

However, the existing agroecological models rarely consider the 
decision-making of farmers about farming practices. It is therefore 
crucial for these models to incorporate such decision-making processes 
and therefore factors that may influence farmers’ decision. Indeed, the 
emergent behavior of the agroecosystem is the result of individual ac-
tions. Indeed, the emergent behavior of the agroecosystem is the result 
of individual actions. Moreover, the factors affecting farmers’ decision- 
making, particularly with regard to the adoption of sustainable farming 
practices, are highly diverse and may include cognitive aspects (Meunier 
et al. 2024), resistance to change, environmental issues, and economic 
concerns (Dessart et al., 2019). Economic concerns are often cited as one 
of the primary motivators (e.g., Crase and Maybery, 2004; Greiner, 
2015; Honlonkou, 2004). These diverse motivations can include profit 
(e.g., Läpple and Kelley, 2013), maximizing production (e.g., Greiner, 

2015), and reducing production costs (Mzoughi, 2011). Factors affecting 
farmers’ decision-making may be related to themselves and the status of 
their farm, related to others farmers (e.g., competitive advantage), or 
linked to the ecological system (e.g., disease intensity). Including 
farmers’ behavior, by taking these different factors into account, is a key 
step towards gaining a better understanding of the dynamics of changes 
in practices in the agricultural territories. 

The overall goal of this article is to investigate, via modelling, tra-
jectories of change in the pesticide practices of agricultural territories in 
response to interactions between ecological, social and economic com-
ponents. The model can be used to simulate trajectories of change in the 
face of various economic, ecological, social, or cognitive factors. For this 
we aimed to develop an agroecosystem modeling approach by coupling 
ecological (crop diseases) and social (farmers) dynamics. This raises 
questions about the spatial and temporal scales involved in coupling 
various types of dynamics (Neumann et al., 2011; Qiu et al., 2020; Wezel 
et al., 2020). Bearing this in mind, we built an agent-based model of a 
farming territory. Agent-based models that simulate the dynamics of 
individuals under the influence of different factors in the territory, 
which in turn affect the trajectories of the territories themselves, are 
relevant for modeling the agroecological transition (Feola and Binder, 
2010; Rebaudo and Dangles, 2013). Our model simulates the 
decision-making of farmers with regard to their pesticide practices in 
response to different ecological (crop and disease in particular), eco-
nomic (profit and yield in particular) and social factors (practices of the 
neighbors in particular). Reciprocally, farmers’ practices influence the 
ecological dynamics (of diseases in particular). With the model we 
analyzed how some economic (pesticide prices), ecological (disease 
levels), and agronomic (efficacy of alternative crop protection practices) 
factors impact pesticide use and how they could be potential territorial 
levers to reduce them. Here, we used the model to explore how the 
economic and ecological characteristics of an agricultural territory in-
fluence its trajectory of change and final status. To characterize the 
transition year after year and at equilibrium, we constructed various 
indicators that correspond to the economic, agronomic, environmental, 
and ecological state of the territory. 

2. Material and methods 

To describe our model, we follow the ODD (Overview, Design 
concept, and Details) protocol (Grimm et al., 2010) as prescribed in 
Jakeman et al. (2024). This protocol was created to standardize the 
published descriptions of agent-based models and to make model 
description more understandable and complete. The Overview section 
(2.1) provides a high-level description of the model and mentions the 
procedures to be explained in further detail in the sub-models. The 
Design concepts section (2.2) describes the general concepts involved. 
The formulaic expressions of the sub-models are then given in the De-
tails section (2.3). Section 2.4 describes the parametrization and initial 
conditions of the model. We finish with the scenario and indicators in 
section (2.5). 

2.1. Overview 

2.1.1. General purpose 
The purpose of the model is to simulate changes in pesticide practices 

in a territory in response to different factors taken into account 
ecological and social components. The model first simulated the 
simplified spatiotemporal ecological dynamics of a wheat-growing ter-
ritory attacked by airborne fungal diseases such as leaf rust (Puccinia 
triticana). These diseases require systematic fungicide treatments and 
can cause yield losses of up to 50 % in the case of strong epidemics. The 
model also includes farmers’ decision-making about their own practices. 
We investigate how the interactions between farmers’ decision-making 
and the ecological system can influence the trajectories of change in 
pesticide practices. To characterize the territorial agricultural 
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transitions, we estimate several economic, agronomic, environmental, 
and ecological indicators in the territory. Here, we present the frame-
work of the model and the choices made. 

2.1.2. System modeled and main assumptions of the model 

2.1.2.1. The simplified farming and territory. The territory is represented 
by a constant number of fields. Each field (cell) is characterized by a type 
of practice and a farmer who has to make decisions about his field each 
year. For the sake of simplicity, we have represented the farm as a single 
field and farmer. 

2.1.2.2. Type of practices and associated disease and yields. In this paper, 
we chose to greatly simplify the model by considering only two types of 
agricultural systems: no-input system (NI) and high-input system (HI). 
NI corresponds to an “agroecological system”. It corresponds to a set of 
agricultural practices that allows avoiding chemical inputs, particularly 
pesticides, using resistant varieties and crop diversity such as the 
mixture of varieties or species (Wezel et al., 2014), providing ecological 
resistance (or disease escape) to disease. HI corresponds to “intensive 
monoculture system”. It is associated with systematic pesticide treat-
ments and the use of varieties optimized for their yield under conditions 
of pesticide use. These two agricultural systems cover a whole range of 
agricultural practices, such as choice of crops, sowing dates and den-
sities, choice of varieties, rotation, tillage. However, here we chose to 
focus on the issue of pests and crop protection. 

HI and NI are characterized by their global level of resistance to 
diseases and their associated yields. The NI practice are assumed to 
allow for the ecological regulation of pathogens (Alvarez, 2022; De 
Ponti et al., 2012; Seufert et al., 2012). In terms of pesticides use, we 
make thus the assumption that for the NI farming practice, pesticides are 
never applied. By contrast, in the model, the farmers with HI farming 
practices systematically use at least one treatment of pesticides and a 
second treatment in case of severe disease infection. 

In terms of yields, we assume that maximal reachable crop yields are 
higher with the HI practice than with the agroecological NI practice 
(Knapp and Van Der Heijden, 2018). However, the difference in yield 
between diseased and non-diseased crops is smaller in the case of NI 
practices, which corresponds to a higher crop tolerance with greater 
yield stability (Knapp and Van Der Heijden, 2018). Here, we therefore 
consider a set of practices named HI and NI resulting in the character-
istics presented above without considering effects of individually vari-
ables such as sowing date, plant density and genotypes in the potential 
yield. 

2.1.2.3. Factors taken into account to simulate disease in field and land-
scapes. In this paper, the level of diseases in each field depends on the 
residual inoculum and the type of practice in the field and on the disease 
spreads from the other infected fields of the territory. In the model we 
assume that the disease spreads from the infected fields at a maximum 
dispersal distance, and that fields are more or less susceptible to the 
disease depending on the residual inoculum and the type of practice. 
Despite their potential strong impact (Gahlot et al., 2020; Wan et al., 
2022) we do not consider environmental variables such as temperature, 
humidity or winds on disease development. The environmental condi-
tions are considered similar for every field. In this paper we focus on the 
interactions between fields in terms of spore dispersal. In terms of type 
of diseases, we in particular consider biotrophic rust disease that are 
known to disperse by wind their reproductive structures to other fields. 

2.1.2.4. Factors taken into account to simulate the probability of changes of 
practices by the farmers. In this paper, the probability of change depends 
on two aspects: (i) the resistance to change of farmer and (ii) the eco-
nomic profit of the farmer in relation to the profit of farmers in the other 
practices. It represents the farmer’s willingness to have a higher profit 

than these other farmers. The more the agent-farmer is willing to have a 
higher profit, the more likely it is to change practices. It also takes into 
account his own previous year’s profit. In this first version of the model, 
we therefore do not include social and environmental aspects in the 
probability of change. 

2.1.3. State variables and scales 
We represented an agricultural territory as a square domain dis-

cretized in N x N cells, with each cell representing a field. This spatial 
domain has both ecological dynamics (i.e., spread and epidemics of 
pathogens) and social dynamics (i.e., evolution of farmers’ choice). One 
agent-farmer is associated with each cell, which represents the spatial 
unit of the decision-making about farming practices (HI and NI practices 
here). Decisions are taken at each time step, which corresponds to one 
year. The type of practices influences the ecological dynamics in terms of 
disease development (the NI practices are more resistant to the patho-
gens). In return, the level of disease (ecological dynamics) influences the 
choice of the farmers (social dynamics) in terms of practices: the pres-
ence of pathogens determines the yields, and the farmer’s profit is taken 
into account in their decision-making about farming practices. In the 
model, the social and economic (farmer’s choice) and ecological (dis-
ease development) components therefore interact and respond to each 
other at field and territorial level. 

We divided our state variables into five types corresponding to agent- 
farmers, practices, profit, pests, and territory. While presenting the 
framework of the model, we specify our choice for each variable for the 
simplified representation of the territory. All variables (name, symbol, 
domain, and unit) are listed in Appendix 1. 

An agent-farmer is characterized by three time-dynamic ecological 
disease variables: the epidemic status of its field, si,t ∈ {0;1}, which 
represents the absence (si,t = 0, healthy field) or presence (si,t = 1, 
infected field) of the disease; the probability ui,t of the field being infec-
ted; and, in the case of infection, the probability hi,t of escaping the 
disease and being healthy (hereafter, escape probability). An agent- 
farmer is also characterized by a farming practice in year t, ki,t . In this 
paper, we consider two simplified practices, ki,t ∈ {NI, HI}, which 
correspond to no-input (NI) and high-input (HI). It is also associated with 
the quantity of pesticide treatments used that is counted by the variable 
qi,t of pesticide treatments used by the agent-farmer i in each year t. 

For each agent-farmer, we also estimate the level yi,t of yield in year t. 
It is defined as a relative proportion of the maximum potential yield, 
hereafter referred to as yield of agent-farmer i in year t and depend of the 
type of practice and of the level of disease. Knowing the yield, and other 
costs (such as the price of pesticide) the model estimate for each agent- 
farmer a level пi,t of profit in year t (relative proportion of the maximum 
potential profit). 

Each year, the model estimates for each farmer the probability of 
change of practice. In the version of the model presented here, the 
probability of change depends on two aspects: (i) the personal resistance 
to change of each farmer and (ii) the profit made by the farmer in 
relation to his own yield history and the yield of other farmers (in 
particular of the other practice). For this, an agent-farmer has the 
following attributes: a change-practice-threshold vi that represents 
resistance to change of practice and a probability pa→b

i,t of change from 
practice a to farming practice b in year t. The probability pa→b

i,t is 
composed of the metric profit comparison χa→b

i,t . It is a comparison be-
tween his profit and the average profit of farmers performing the other 
practice. It represents the agent-farmer’s willingness to have a higher 
profit than these other agent-farmers. The more the agent-farmer is 
willing to have a higher profit, the more likely he is to change. The 
willingness is higher if its profit is lower than that of others. 

Agricultural practice a is characterized by a number of treatments of 
pesticides qa,s, a yield ya,s, and a disease escape probability ha. The first 
two depend on the epidemic status s of the field where the practice is 
applied. If the field is infected, the yield decreases and the number of 
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treatments increases. The yield loss in the case of disease infection is 
higher for HI than for NI. The disease escape probability is the proba-
bility that the disease will not develop within the field, even if it has 
been infected. We consider an escape probability of the NI practice 
higher than for the HI practice (Beillouin et al., 2021; Malézieux et al., 
2009; Ratnadass et al., 2012). This corresponds to the lower develop-
ment of disease in fields with agroecological practices such as species or 
cultivar mixtures (Boudreau, 2013; Guo et al., 2020; Luo et al., 2022; 
Schoeny et al., 2010; Zhang et al., 2019). On the other hand, wheat crops 
grown intensively in monocultures and with susceptible varieties are 
prone to disease (Ekroth et al., 2019). 

The economic variables are the maximal potential profit πmax, the 
selling price per yield unit w, and the cost c per treatment of pesticides. 
The pest variables are the dispersal capacity d (i.e., the probability that 
pests from an infected field will reach the agent-farmer’s field and infect 
it), the radius of dispersal r (i.e., the maximum distance at which the 
disease can disperse from field to field in the territory), and the primary 
inoculum l (i.e., an additional probability for a cell being infected at the 
beginning of each year from an external inoculum). 

2.1.4. Process overview and scheduling 
Within each time step, the model simulates three main processes in 

the following order: (1) the agent-farmers take decisions about their 
practices; (2) a procedure simulates the spread of the disease in the 
territory and eventually in each field; and (3) the agent-farmers update 
their profits depending on their practices and the evolution of the dis-
ease in the territory and particularly in their own fields. These three 
processes are interlinked, as the practices modify the spread of the dis-
ease, which, in turn, modifies the yields. The yields are included in the 
calculation of profits, which will be taken into account the following 
year when the agent-farmers choose their practice. The events are 

modeled with the processes described in detail in Section 2.3. 

2.1.4.5. Agent-farmer decision-making. For each agent-farmer, the pro-
cedure Decision_to_change (see Section 2.3.1) calculates the probability of 
changing practice for each farmer, depending on his previous year’s 
profit, the average profits of the previous year of the other agent-farmers 
(using the same or the other farming practice), and the maximum 
observed yields with the two practices. For each agent-farmer, this 
procedure determines whether they change or keep the same farming 
practice. The idea is that the agent-farmer wants to have a sufficiently 
large profit, relative to the other practice as well. It also takes into ac-
count their personal change-practice-thresholds. 

2.1.4.6. Ecological dynamics. The procedure Disease_spread (see Section 
2.3.2) simulates the spread of the disease in the territory on the basis of 
the inoculum, the probability of infection, the probability of escape, and 
the epidemic status. This procedure relies on the suppose that the dis-
ease spreads from the infected fields at a maximum dispersal distance, 
and fields are more or less susceptible to the disease depending on the 
residual inoculum and the type of practice. 

2.1.4.7. Updating of profits. The procedure Profit_update (see Section 
2.3.3) calculates the profit for each agent-farmer as a function of their 
practice and the epidemic status of their field after the simulation of the 
disease spread. 

Actions are taken by each agent-farmer and processed one by one in a 
random order at each iteration. The model flow is shown in Fig. 1. 

Fig. 1. Model flow with the variables and parameters affecting the processes.  
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2.2. Design concept 

2.2.1. Emergence 
The main properties that emerge from the model are (1) the spatial 

spread of the disease and the number of infected fields each year, and (2) 
the number and spatial distribution of agent-farmers in the agricultural 
territory who apply each farming practice each year. These properties 
influence each other and vary in a non-linear way depending on the 
initial conditions and model parameter values. 

2.2.2. Individual decision making 
Agent-farmers choose their farming practice at each time step. The 

model calculates a probability of change from the current practice to the 
other farming practice according to different economic factors: their 
own profits, the average profits of agent-farmers with NI or HI practices, 
and the maximum observed yields in the territory, and to their own 
change-practice-thresholds. 

2.2.3. Individual sensing 
Agent-farmers are aware of the epidemic status of their own field at 

each time step. They have access to global information about the 
average profit of agent-farmers depending on the farming practice. We 
assume that such perception is accessible and not erroneous. 

2.2.4. Interaction 
We modeled two types of interactions. The first interaction is direct 

between the agents. They know the average profit of agent-farmers and 
use it to decide whether or not to change their practices (procedure 
Decision_to_change (see Section 2.3.1)). The second type is mediated by 
the environment: the practice implemented by the agent-farmers affects 
the spread of the disease (procedure Disease_spread (see Section 2.3.2)). 

2.2.5. Heterogeneity 
At initialization, the agents are heterogeneous in terms of their 

change-practice-thresholds, farming practice, and epidemic status. 

2.2.6. Stochasticity 
The elements of stochasticity in the model are part of the initializa-

tion, the ecological dynamics, and the agent-farmers Decision_to_change 
procedure. At initialization, the epidemic status of the agent-farmers’ 
fields, their initial farming practices (see Section 2.4. Parametrization 
and initial conditions), and their change-practice-threshold are 
randomly assigned. The distribution of the change-practice-threshold 
among agent-farmers follows a normal law independent of the spatial 
location. During the Disease_spread procedure, the infection of a field is a 
stochastic event based on two probabilities: the probability of the field 
being infected and the probability of escaping the disease once infected. 
In the Decision_to_change process, the probability of change for the agent- 
farmers is computed. 

2.2.7. Observation 
We tracked the changes of disease spread and farming practices over 

time. In addition, we tracked the total amount of pesticides used by all 
the agent-farmers, the yield (average and by farming practice), and the 
profits (average and by farming practice). In Section 2.4, we describe the 
various indicators based on these observations. 

2.3. Details 

The model was implemented in NetLogo 6.2.0 (Wilensky, 1999). It is 
available on: https://zenodo.org/record/8208555. 

2.3.1. Decision_to_change procedure 
The core of the Decision_to_change procedure is the probability of 

change pa→b
i,t from farming practice a to farming practice b for an agent- 

farmer i in year t (see Eq. (1)). A probability of change equal to 0 rep-
resents no interest in changing and a probability to change of 1 repre-
sents a full interest in changing. 

pa→b
i,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if χa→b
i,t < vi

χa→b
i,t if 1 > χa→b

i,t > vi

1 if χa→b
i,t > 1

(1) 

The probability pa→b
i,t depends the decision-metric χa→b

i,t . If this 
decision-metric is less than the change-practice-threshold vi of the 
agent-farmer, the probability of change is set to zero. Agent-farmers 
remember during the current year if they wanted to change the 
farming practices last year. Agent-farmers can only make one decision 
per year but this change becomes applicable if they want to change for 
two years in a row. This represents the inertia of change. Indeed, farmers 
have a resistance to change (Anastasiadis and Chukova 2019). Once an 
agent-farmer has changed practice, they cannot change again until the 
end of the simulation. Indeed, we also assumed that agent-farmers could 
not return to their previous farming practice given the significant 
up-front costs (David et al., 2022). 

The metric χa→b
i,t (see Eq. (2)) is composed of different factors affecting 

farmers’ decision-making (e.g., cognitive aspects, social factors, envi-
ronmental issues, and economic). Here, the metric represents the 
farmer’s willingness to have a profit higher than the average of farmers 
with the other practice. In other words, the farmer will only change if the 
average profit of the alternative practice is higher. Indeed, most farmers 
will not adopt sustainable farming practices if they are not profitable 
(Defrancesco et al., 2007; Mettepenningen et al., 2013; Wilson, 1992). 

χa→b
i,t =

πb
t− 1 − πi, t− 1

|πb
t− 1 − πa

t− 1|
(2) 

Eq. (2) represents a standardized difference. The numerator is the 
difference between πb

t− 1, i.e., the average profit of the agent-farmers 
performing practice b and πi,t− 1, i.e., the previous profit (see Eq. (2)). 
The denominator is the absolute value of the difference between the 
average profits of the agent-farmers performing farming practices b and 
a last year, πb

t− 1 and πa
t− 1, respectively. See Section 2.3.3 below for the 

calculation of the profits. A negative profit comparison metric indicates 
that the agent-farmer’s profit is higher than the average profit of agent- 
farmers performing the other practice. A profit comparison metric 
greater than 1 indicates that the agent-farmer’s profit is lower than the 
average profit of agent-farmers performing the same practice. A profit 
comparison metric that is strictly greater than 0 and strictly less than 1 
indicates that the agent-farmer’s profit is lower than the average profit 
of agent-farmers performing the alternative practice. 

2.3.2. Disease_spread procedure 
The epidemic status of the fields in year t is updated in two steps. In 

the first step, the procedure determines whether a field is potentially 
infected. In the second step, the procedure determines whether the 
infected field escapes the disease. 

Step 1: Arrival of spores in each field 
Following Precigout et al. (2022), our model distinguishes three 

different origins of the spores for each field: (1) spores coming from 
within the field left behind from the previous year’s epidemic; (2) 
incoming spores from infectious neighboring cells; and (3) the external 
primary inoculum, i.e., spores entering the landscape from outside the 
territory. As in Précigout and Robert (2022), the spores arriving in a 
field depend on the distance from the infectious neighboring fields. 
Moreover, we assumed that the spores survive one interculture period. 
So, if the field of an agent-farmer i was infected in the previous year 
(ei,t− 1 = 1), it is still infected in the current year, i.e., ei,t = 1. If the field 
of an agent-farmer i was not infected, the field has a probability ui,t of 
being infected (see Eq. (3)). This probability depends on various factors: 
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the epidemic status of the field of agent-farmer i in the previous year t-1, 
the epidemic status of the fields at a distance r (radius of dispersal) in the 
previous year t-1, and the probability d that pathogens from an infected 
field will reach the agent-farmer’s field and infect it. The fields of 
agent-farmers within a distance r from the agent-farmer i constitute the 
set Ω(i, r). In this way, the spores spread a certain distance from the 
infected fields. The probability of being infected also depends on the 
inoculum l, which represents the arrival of external spores every year. 

ui,t = min

(

1; d *

[∑
j∈Ω(i,r)sj,t− 1
∑

j∈Ω(i,r)1

]

+ l

)

(3) 

Step 2: Disease escape 
In the fields, not all the arriving spores succeed in infecting new 

leaves (e.g., spores fall to the ground or to non-susceptible plant surfaces; 
Levionnois et al., 2023). There is the probability ha that fields of the 
agent-farmers escape the disease after being infected, and therefore their 
epidemic status will be healthy. This depends particularly on the type of 
practice. For example, monocultures of susceptible varieties are much 
less likely to escape than the mixtures of species (Levionnois et al., 
2023). 

2.3.3. Profit_update procedure 
The profit πi,t (see Eq. (4)) depends on the selling production price w, 

the cost c per pesticide treatment, the number qi,t of pesticide treatments 
used by the agent-farmer i at each year t, and the yield of the field yi,t of 
the agent-farmer i in year t. The values qi,t and yi,t depend on both the 
current farming practice ki,t and the epidemic status si,t (Table 1). 

πi,t = yi,t*w − c*qi,t (4)  

2.4. Parametrization and initial conditions 

For the simulations, the parameterizations of the model entities are 
required, namely: (1) for the agent-farmers, the level of the change- 
practice-threshold; (2) for the practices, the associated pesticide treat-
ments and the disease escape probability; (3) for the pathogens, their 
radius of dispersal; (4) for the chemical products, their selling price; (5) 
for the territory, the number of agent-farmers, their affiliation with each 
practice, and their location in the territory. The change-practice- 
thresholds are assigned with random values to the agent-farmers following 
a normal law (µ = 0.5, σ = 0.05) at initialization. The radius of dispersal is 
initialized at two (r = 2). The dispersion is different between a radius of 
zero (no dispersal) and one and between a radius of one and two. Above 
two, the results do not differ. As leaf rust (Pucciniales) can spread over 
long distances (Bannon and Cooke, 1998; Visser et al., 2019), we chose a 
radius of two to reduce the simulation time. The characteristics of 
farming practices are provided in Table 1. 

Based on the characteristics of the farming practices, we identified 
four distinct cases: an agent-farmer with a HI practice in a healthy field, 
an agent-farmer with a HI practice in an infected field, an agent-farmer 
with a NI practice in a healthy field, and an agent-farmer with a NI 
practice in an infected field. For each case, there is an associated number 
of pesticide treatments (qi,t) and the yield of the field (ya,s). By setting the 
selling price at 1 (w = 1), we calculate the profit as a function of the cost 
of the pesticides as shown in Fig. 2. We identified four crossover points, 

A (c = 0.05) when the profit of an agent-farmer performing HI practice 
in an infected field becomes lower than the profit of an agent-farmer 
performing NI practice in a healthy field; B (c = 0.75) when the profit 
of an agent-farmer performing HI practice in an infected field becomes 
lower than the profit of an agent-farmer performing NI practice; C (c =
0.2) when the profit of an agent-farmer performing HI practice in a 
healthy field becomes lower than the profit of an agent-farmer per-
forming NI practice in a healthy field; D (c = 0.25) when the profit of an 
agent-farmer performing HI practice in a healthy field becomes lower 
than the profit of an agent-farmer performing NI practice. 

We chose N = 41, thus the grid is composed by 1681 cells. We 
assumed that one cell represents 110 ha (average size of arable farms in 
France (INSEE, 2020), therefore the territory modeled is about 185,000 
ha. We chose this size for several reasons. The model behaves well in 
relation to its resolution time. It also provides a good representation of 
the epidemic level. Indeed, according to Precigout et al. (2023), a grid of 
at least 1089 cells permits a consistent representation of the epidemic 
level for disease such as leaf rust. Finally, we had to avoid edge effects 
and have a sufficiently large size so that there was no effect of 
size-related stochasticity. 

At initialization, 30 % of the fields are randomly infected and 7.5 % 
of the agent-farmers use NI farming practices, which corresponds to the 
percentage of agricultural areas currently used for organic farming in 
Europe in 2018 (Agence Bio, 2019). 

2.5. Scenarios and indicators 

2.5.1. Two main simulation scenarios 
In the paper, we chose to study two types of scenarios to explore how 

the economic and ecological characteristics of an agricultural territory 
influence the trajectory of practices in the territory and its final status. 
These are just two examples of what can be explored with the present 
socioecological model. Here, we chose two fairly simple sets of scenarios 
to test the model’s behavior and consistency. 

The first scenarios simulate the impact of some territorial charac-
teristics on the trajectories of agricultural practices in the territory. 
Along with the practices, we also characterize these trajectories with 
economic (agent-farmer’s profit), ecological (level of disease), and 
environmental (number of pesticides treatments) indicators. In these 
simulations, the parameters characterizing the components of the ter-
ritory are fixed. We follow the simulation for 60 years. We simulate the 
dynamic behavior of four territories corresponding to four different 
economic and/or ecological territorial characteristics. The four simu-
lated territories are similar except for the economic or disease parame-
ters. Two types of parameters are used to modify the simulated 
territories: the cost of pesticides (the economic characteristic) and the 
dispersal capacity of disease (the ecological characteristic) (see Table 2 
for the parameter values). First, in a territory with low dispersal (cor-
responding to low disease pressure), we varied the pesticide cost from 
low (first territory) to medium (second territory) and high (third terri-
tory). Then, we simulated a fourth territory with a high disease dispersal 
associated with a medium cost of pesticides. The four simulated sce-
narios represent a territory with: LowCost-LowDispersal, low cost of 
pesticides and low dispersal disease capacity (low disease pressure); 
MedCost-LowDispersal, medium cost of pesticides and low disease 

Table 1 
Characteristics of 4 types of field being characterized by: the farming practices High-input (HI) and No-input (NI) and by the 
epidemics status: 1 being infected, and 0 being healthy.  

Farming practice a High-input practice (HI) No-input practice (NI) 

Epidemic status s 1(infected) 0 (healthy) 1(infected) 0 (healthy) 
Number of pesticide treatments qa,s 2 1 0 0 
Yield of the field ya,s 0.9 1 0.75 0.8 
Disease escape probability ha 0.2 0.4  
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dispersal capacity; HighCost-LowDispersal, high cost of pesticides and low 
disease dispersal capacity; and MedCost-HighDispersal, medium cost of 
pesticides and high disease dispersal capacity (high disease pressure). 
We selected these combinations to highlight contrasting results. We 
excluded certain combinations, as they were redundant with others 
(results not shown here). We analyzed the variations in the territory’s 
trajectory using varied indicators (see below). 

The second simulation scenarios aim to analyze the final states of the 
territories (at pseudo-equilibrium after a transient so that the dynamics 
are not affected by the initial state) in response to variations in the 
economic, ecological, and agronomic parameters. To do this, we run a 
sensitivity analysis of the model with three parameters: pesticide cost 
(Economic scenario), disease dispersal capacity (Ecological scenario), and 
ability of the agroecological NI practice to escape disease (Agronomic 
scenario). We explored the parameter ranges, akin to sensitivity analysis, 
by varying of the cost of the pesticide (from 0 to 0.2, with an interval of 
0.01), the capacity of disease dispersal (from 0 to 1, with an interval of 
0.02), and the escape probability (from 0 to 1, with an interval of 0.05) 
to investigate their impacts. We chose a reference territory with a 
moderate range of economic, ecological, and agronomic factors to un-
derscore the dependence of the results on the explored parameter. The 
initial conditions were the same for all the simulations and all the other 
parameters except the varying ones. Details of the parameters used in 
each scenario are presented in Table 2. Because the model contains el-
ements of stochasticity, we ran each scenario 300 times to explore the 
effect of stochasticity on the results, while averaging the results. The 
observed viability of the results is shown with error bands in Fig. 4. 

To remove the influence of the initial state, we ran simulations over 
300 years and collected the last 100-time steps of the trajectory of the 

observed indicators and average them to have an indicator of the 
pseudo-equilibrium situation. The simulations were done on this time-
scale so as to generate regime behavior. The standard deviation of the 
last 100 trajectory indicators represents the importance of the random 
fluctuations. 

2.5.2. Indicators of territory status 
To characterize the simulations, we defined indicators representative 

of the different aspects of the territory (Table 3). We used five types of 
indicators to characterize the territory: farming practice indicators 
(proportion of different types of farming practices in the territory), 
agronomic indicators (yield of fields for each practice and average for 
the entire territory), economic indicators (average profits of each 
practice and profits average for the entire territory), an ecological in-
dicator (number of infected fields for each practice and average for the 
entire territory), and environmental indicators (number of pesticide 
treatments). These indicators are calculated using simulated variables. 
(Table 3) 

3. Results 

3.1. Influence of pesticide costs and disease dispersal capacity on the 
trajectory of agricultural practices in the territory 

For the four scenarios representing different economic and ecological 
characteristics in the territories, we present the first 60 years of the 
simulated trajectories, which correspond to a transition phase between 
the initial configuration and a pseudo-equilibrium regime (Fig. 3). 

In the scenario LowCost-LowDispersal (Fig. 3A), all the agent-farmers 

Fig. 2. Profits of agent-farmers (y-axis) depending on the cost of pesticides (y-axis). Each line corresponds to the profit of agent-farmers performing a particular 
practice (high-input or no-input) with a certain epidemic status (infected or healthy field). In red: high-input practice in a healthy field, in pink: high-input practice in 
an infected field, dark green: no-input practice in a healthy field, and clear green: no-input practice in an infected field. 

Table 2 
Values of the parameters used in the two mains scenarios simulated in the paper. *The parameter to be varied is indicated as a range, while the others are constant. The 
columns represent the values for each scenario for the cost of pesticides, the dispersal capacity and the escape probability of no-input.   

Cost of pesticides Dispersal capacity Escape probability of no-input 

Symbol c d hNI 

Domain [0; 0.2] [0; 1] [0; 1] 
Step 0.01 0.02 0.05 
Two types of Scenarios Simulation of the trajectory LowCost-LowDispersal 0.05 0.1 0.4 

MedCost-LowDispersal 0.075 0.1 0.4 
HighCost-LowDispersal 0.1 0.1 0.4 
MedCost-HighDispersal 0.075 0.3 0.4 

Simulation of the territorial equilibrium Economic [0, 0.2]* 0.2 0.4 
Ecological 0.07 [0, 1]* 0.4 
Agronomic 0.07 0.2 [0, 1]*  
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choose the HI practice (Fig. 3A1). Indeed, the low cost of pesticides (c =
0.05) used in the simulation means that the HI practice is always more 
profitable than the NI practice (Fig. 3). Around 50 % of the fields are 
infected (Fig. 3A4), with the consequent use of around 1250 pesticide 
treatments for preventive and curative control (Fig. 3A5). Therefore, the 
average yield remains at around ~0.97 (Fig. 3A2) and the average profit 
at ~0.9 (Fig. 3A3). 

In the scenario MedCost-LowDispersal (Fig. 3B), we increase the cost 
of pesticides to 0.075 compared with 0.05 in scenario LowCost-Low-
Dispersal (Fig. 3A). At time step 60, 70 % of the farmers use the NI 
practice. Some agent-farmers using the HI practice with infected fields 
change to the NI practice (Fig. 3. B1). Over time, as more and more 
farmers adopt the NI practice, the number of infected fields (Fig. 3B4) 
and the quantity of pesticide treatments used (Fig. 3B5) decrease in the 
territory. For this set of parameters, the profit from the NI practice in a 
healthy field (πi,t = 0.8) is greater than the profit from the HI practice in 
an infected field (πi,t = 0.75) but lower than the profit from the HI 
practice in a healthy field (πi,t = 0.925) (see Fig. 1 and parameter values 
in Table 1). The profit and yields of the HI farmers increase as they are 
less and less infected, thus taking advantage of the greater number of 
farmers with NI practices. Indeed, because the NI practice has a higher 
disease escape rate than the HI, the higher proportion of NI practices 
decreases the proportion of infected fields. The profit and yields of the NI 
farmers likewise increase, because they are also less infected. 

In the scenario HighCost-LowDispersal (Fig. 3C), we further increased 
the cost of pesticides to 0.01. As in the previous scenario, agent-farmers 
again chose to change to the NI practice but much more rapidly than in 
the scenario MedCost-LowDispersal (Fig. 3C1 vs. Fig. 3B1). Here again, 
with the increase in the NI practice, the number of infected fields and 
pesticide treatments decreased. The average yield in the territory also 
decreased, because the NI practice has a general lower yield than the HI 
practice. The profit of agent-farmers performing the NI practice was the 
same as in the other scenarios. However, the profit of those performing 

the HI practice was lower (Fig. 3C3 vs. Fig. 3B3). For this set of pa-
rameters, as in the set of parameters for the scenario MedCost-Low-
Dispersal, the profits from the NI practice in a healthy field (πi,t = 0.8) are 
higher than those from the HI practice in an infected field (πi,t = 0.7) but 
lower than those from the HI practice in a healthy field (πi,t = 0.9). 
Moreover, the profits from the NI practice in an infected field (πi,t =

0.75) are situated between those of the HI practice in infected and 
healthy fields. It is interesting to note that in the model, the higher cost 
of pesticides generates various changes in farming practices (first col-
umn in Fig. 3) ranging from stationary behaviors (Fig. 3A1) to almost 
linear changes (Fig. 3B1) and even exponential changes over time 
(Fig. 3C1). 

In the scenario MedCost-HighDispersal (Fig. 3D), we changed the 
disease intensity in the territory by increasing the disease pressure 
compared with the scenario MedCost-LowDispersal (Fig. 3B). The sce-
nario MedCost-HighDispersal thus has a higher disease dispersal capacity 
compared with the scenario MedCost-LowDispersal. This higher disease 
pressure leads to a higher proportion of infected fields (Fig. 3D4). The 
higher proportion of infected fields for farmers with HI practice suggests 
a greater likelihood of them transitioning to NI practice. Indeed, for this 
set of parameters, infected fields with the HI practice have a lower yield 
and are less profitable than the NI practice on average. Therefore, the 
higher disease pressure encourages farmers to change to the NI practice 
(Fig. 3D1). Even more remarkable, at the end of the simulation, more 
farmers used two pesticide treatments instead of one, whereas it was the 
contrary in the scenario MedCost-LowDispersal. It should also be noted 
that of the agent-farmers using the HI practice at the end of the simu-
lation, 7.5 % were the ones that have changed their practice once, from 
NI at initialization to HI practice (Fig. 3D1). They were then prevented 
from returning to NI, as it was only possible to change practice once 
during the simulation. They chose to change practice at the start of the 
simulation, because a high proportion of the field was infected and did 
not represent an equilibrium state. 

Table 3 
Definition and calculation of the four main types of indicators of the simulated territory. * The 1( ) operator is equal to 1 if the argument is true, otherwise it is 0. The 
columns represent the type of indicator, the variable observed, the indicator and its mathematical notation, respectively.  

Type Variable observed Indicators – Average of the last 100 time steps of the simulation Notation 

Farming practices Farming practice of agent-farmers Proportion of agent-farmers with no-input farming practice 
kNI

t =

∑N2

i=11(ki,t = NI)
N2 * 

Proportion of agent-farmers with high-input farming practice 
kKI

t =

∑N2

i=11(ki,t = HI)
N2 

Agronomy Yield of fields Average yield of all agent-farmers 
yt =

∑N2

i=1yi,t

N2 

Average yield of agent-farmers with no-input farming practice 
yNI

t =

∑N2

i=1yi,t ⋅1(ki,t = NI)
∑N2

i=11(ki,t = NI)
Average yield of agent-farmers with high-input farming practice 

yHI
t =

∑N2

i=1yi,t ⋅1(ki,t = HI)
∑N2

i=11(ki,t = HI)
Economy Profit of agent-farmers Average profit of all agent-farmers 

πt =

∑N2

i=1πi,t

N2 

Average profit of agent-farmers with no-input farming practice 
πNI

t =

∑N2

i=1πi,t ⋅1(ki,t = NI)
∑N2

i=11(ki,t = NI)
Average profit of agent-farmers with high-input farming practice 

πHI
t =

∑N2

i=1πi,t ⋅1(ki,t = HI)
∑N2

i=11(ki,t = HI)
Ecology Disease in fields Number of fields with disease et =

∑N2

i=1ei,t 

Percentage of fields with disease 
e′

t =

∑N2

i=1ei,t

N 
Number of fields with disease among no-input farming practice eNI

t =
∑N2

i=1ei,t ⋅1(ki,t = NI)
Percentage of fields with disease among no-input farming practice 

e′NI
t =

∑N2

i=1ei,t ⋅1(ki,t = NI)
∑N2

i=11(ki,t = NI)
Number of fields with disease among high-input farming practice eHI

t =
∑N2

i=1ei,t ⋅1(ki,t = HI)
Percentage of fields with disease among high-input farming practice 

e′HI
t =

∑N2

i=1ei,t ⋅1(ki,t = HI)
∑N2

i=11(ki,t = HI)
Environment Pesticides used by agent-farmers Total number of agent-farmers using one pesticide treatment Q1

t =
∑N2

i=1qi,t ⋅1(ei,t = 0)
Total number of agent-farmers using two pesticide treatments Q2

t =
∑N2

i=1qi,t ⋅1(ei,t = 1)
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The scenarios MedCost-LowDispersal and MedCost-HighDispersal 
illustrate a different speed of transition (the number of steps required to 
reach the equilibrium state). The equilibrium states for both contexts are 
the same but with a higher transition speed for MedCost-HighDispersal 
than for MedCost-LowDispersal. Moreover, even though the same number 
of farmers changed their practice by the end of the two simulations, the 
share of infected fields was different. 

3.2. Sensitivity of the model to the three parameters: pesticide cost, 
disease dispersal capacity, and efficacy of disease escape with the 
agroecological no-input practice 

In Fig. 4, we show how the territorial indicators at the pseudo- 
equilibrium varied along with the ranges of pesticide costs (row A), 
disease dispersal capacities (row B), and probabilities of disease escape 
for the NI practice (row C). We used four types of indicators to charac-
terize the territory, from left to right: proportion of agent-farmers 
applying NI and HI practices in the territory, average profits for both 
types of practices (economic indicators), number of infected fields for 

both types of practices (ecological indicators), and number of pesticide 
treatments for HI practices (environmental indicators). The percentage 
of infected fields per practice corresponds to the number of fields 
infected with the practice (the ecological indicator, column 3) out of the 
number of agent-farmers performing the practice (column 1). 

The pesticide cost has a strong “threshold” effect on the number of 
agent-farmers performing each type of practice in the territory 
(Fig. 4A1). When the pesticide cost increases from 0.07 to 0.075 (tipping 
point), the number of agent-farmers with the HI practice drops abruptly 
from 100 % to 7.5 % (and thus inverses with the NI practice). The 
pesticide cost of 0.075 corresponds to a point where the profits from the 
NI practice in a healthy field (yNI,0 = 0.8) and infected field (yNI,0 =

0.75) are equal to or higher than those from the HI practice in an 
infected field (yHI,1 = 0.75) (Fig. 2). Hence, this is the cost at which 
agent-farmers performing the HI practice in an infected field decide to 
switch to the NI practice. At a pesticide cost c = 0.2, regardless of 
whether the fields were infected, the agent-farmers with the NI practice 
have a higher profit (Fig. 2). Therefore, from this price onwards, agent- 
farmers who perform the NI practice at initialization never change their 

Fig. 3. Each row (A, B, C, and D) represents the simulated territorial trajectory in a particular scenario: A – LowCost-LowDispersal; B – MedCost-LowDispersal; C – 
HighCost-LowDispersal; D – MedCost-HighDispersal. Each column (from 1 to 5) represents calculated indicator: column 1 – proportion of agent-farmers with different 
farming practices in the landscape (kHI

t and kNI
t ); column 2 – agronomic (average yields of agent-farmers with different farming practice) (yHI

t and yNI
t ); column 3 – 

economic: average profit of the farmers (πHI
t and πNI

t ); column 4 – ecological: number of infected fields in the landscape (eHI
t and eNI

t ); column 5 - environmental: 
number of pesticide treatments used in the landscape (Q1

t and Q2
t ). Line colors in the plots represent the type of farmer’s practices (HI in red, NI in green). 
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practice and therefore all agent-farmers end up using the NI practice. 
The number of infected fields and the number of treatments follow the 
threshold effect of the percentage of practices. The total number of 
infected fields decreases in line with the threshold. Nevertheless, some 
fields are still infected. The effect of pesticide costs on average profits is 
not the same as the threshold effect of the percentage of practices. The 
average income of agent-farmers performing the NI practice, which is 
not linked to the cost of pesticides, remains stable, slightly less than 0.8. 
The income of agent-farmers performing the HI practice is rather linear, 
decreasing in line with the increasing pesticide cost. 

Fig. 4B shows the average indicators at the pseudo-equilibrium along 
a range of disease dispersal capacities. The number of agent-farmers 
performing the NI practice increases almost linearly with the increase 
in disease dispersal probability (Fig. 4B1). The total number of infected 
fields increases slowly. Nevertheless, the disease dispersal capacity has a 
different effect on the number of NI and HI infected fields. The former 
increase substantially, whereas the latter decrease (Fig. 4B3). However, 
as the number of HI infected fields decreases less quickly than the 
number of agent-farmers performing HI, the share of HI infected fields 
increases (Fig. A2). Conversely, as the number of NI infected fields in-
creases less quickly than the number of agent-farmers performing NI, the 
share of NI infected fields increases (Fig. A2). As the number of HI 
infected fields decreases, the number of pesticide treatments decreases. 
The use of two treatments is almost always higher than one treatment, 
with the ratio between the use of two treatments and one treatment 

increasing (Fig. 4B4). Due to the increase in the proportion of infected 
fields for both practices, the average incomes decrease whether for 
agent-farmers performing HI or NI practices (Fig. 4B2). The simulations 
show that disease pressure in the area has a major impact on the type of 
practices implemented by farmers or at least with regard to the patho-
gens’ capacity to spread. In the simulation, areas with high disease 
dispersal will lead to areas with more NI practices. This is for two rea-
sons in the model: NI practices help reduce disease pressure, and when 
disease pressure is high, pesticide treatments for agent-farmers per-
forming the HI practice become too costly. 

The effect of variation of the disease escape probability h of NI 
practices differs from the threshold effect of the pesticide cost or the 
linear effect of the disease dispersal capacity. For a low disease escape 
capacity of NI practices, between h = 0 and h = 0.3 of the NI practice, 
there is a plateau followed by a quick decrease. From h = 0 to h = 0.2, 
the probability of escape with the NI practice is lower than with the HI 
practice (as a reminder, the probability of escape with the HI practice is 
0.2). Therefore, the number of infected fields of agent-farmers per-
forming the NI practice is considerably larger than that of those per-
forming the HI practice. Consequently, the profits of the agent-farmers 
performing the NI practice is low. From 0.2, the proportion of infected 
fields is lower for agent-farmers performing the NI practice, although 
their profits remain stable (Fig. 4C2). In the plateau, the number of each 
type of practice remains the same (high for HI and low for NI) (Fig. 4C1). 
It is only from h = 0.3 onwards that some agent-farmers start to change 

Fig. 4. Each row (A, B, and C) corresponds to simulation of territorial indicators at the equilibirum for different set of parameters: A – Economic scenario corre-
sponding to increase in pesticide cost; B – Ecological scenario corresponding to disease dispersal capacity; C – Practice efficiency scenario, corresponding to the 
ability of the agroecological NI practice to escape disease. Each column (from 1 to 4) represents calculated territorial indicator: 1 – proportion of different types of 
farming practices in the landscape (kHI

t and kNI
t ); 2 – economic: average profit of the farmers (πHI

t and πNI
t ); 3 – ecological: number of infected fields in the landscape 

(eHI
t and eNI

t ); 4 – environmental: number of pesticide treatments used in the landscape (Q1
t and Q2

t ). Line colors in the plots represent the type of farmer’s practices (HI 
in red, NI in green). All mathematical symbols are defined in Table 2. 
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their practices. Afterwards, when increasing the disease escape of NI 
practices (h > 0.3), the number of agent-farmers performing the NI 
practice increases more than linearly with the increase in the disease 
escape probability. By contrast, the number of agent-farmers performing 
the HI practice decreases. The increase in the probability of escape leads 
to a decrease in the number of infected fields (Fig. 4C3). HI farmers have 
the greatest decrease in the number of infected fields. They benefit from 
increasing disease escape of the NI practices that decreases the disease 
inoculum in the landscape. The number of treatments follows the 
number of infected fields and then decreases after the plateau (Fig. 4C4). 
Here, we test the efficacy of agroecological practices to prevent the 
disease. In other words, the performance of these practices in terms of 
disease escape. In the simulations, the more effective these practices are, 
the more the territories adopt agroecological practices. It is interesting 
to note that all the fields in the territory (for both practices) benefit from 
the performance of the NI practices because of the transport of spores 
from field to field that is decreased in all the landscape. 

4. Discussion 

In this study, we built an agent-based model of an agricultural ter-
ritory to analyze how economic, ecological, and agronomic factors 
impact pesticide use and how they can be a potential lever to reduce 
them. We explored how the economic and ecological characteristics of 
an agricultural territory influence the trajectory of change in the terri-
tory and its final status. Our results show that (1) the ecological dy-
namics and farmers’ decision-making dynamics interact in a complex 
way to determine the practices; (2) the agroecosystems are subject to 
threshold, linear, and more-than-linear trajectories according to 
different factors variation; and (3) various trade-offs exist between 
ecological, economic, and agronomic indicators. 

4.1. Feedbacks between ecological and economic systems 

One key aspect of our approach is its ability to simulate the in-
teractions between ecological variables, economic variables and 
farmers’ decision-making variables. Our findings are in line with the 
literature that emphasizes the need to simultaneously address ecolog-
ical, economic and social components as well as their interaction in 
order to manage nature reserves (Chen et al. 2023) and to effectively 
reduce pesticide use in territories (Lescourret et al., 2015; Rebaudo and 
Dangles, 2013). The model of Chien et al. (2023) highlights the inte-
gration of various mechanisms of two-way human-nature interaction 
through an agent-based model. Lescouret et al. (2013) proposed a 
social-ecological conceptual framework including successive loops be-
tween management, ecosystem, multiple services and social system. 
They illustrated it with a cereal-growing area where the limitation of 
pesticides is one of the elements of this loop. Rebaudo And Dangles 
(2013) stressed the need to develop a comprehensive and empirically 
based framework for linking the social and ecological disciplines across 
space and time in pest management. 

In our model, a territory with a high cost of pesticides is favorable to 
transition to agroecological no-pesticide-use practices (NI). As the cost of 
pesticide treatments increases, it reaches a point where the income of 
agent-farmers performing the intensive high-pesticide-use (HI) practice 
falls below that of agent-farmers performing the agroecological practice. 
This threshold marks a change in the decision-making of agent-farmers 
who subsequently choose to change their practice. In terms of public ac-
tion, the cost of pesticides can be raised through levers such as taxes and 
fees, although their effectiveness is not clear in the literature. In their 
model, Grovermann et al. (2017) showed that a pesticide tax alone has 
little effect on synthetic pesticide use. Although Böcker and Finger (2016) 
found that an additional tax does not necessarily lead to a pesticide 
reduction, Zilberman et al. (1991) demonstrated that pesticide fees 
encourage farmers to become more selective in their choices and to reduce 
pesticide use. Fernandez-Cornejo et al. (1998) found the same results but 

stressed that substantial taxes would be needed to achieve moderate re-
ductions in pesticide use. One explanation for the different results on the 
effect of higher pesticide costs is the environmental circumstances (Böcker 
and Finger, 2016), which was confirmed by our model. Two territories 
with the same average cost of pesticides but with a different level of dis-
ease can be more or less favorable to agroecological practices. 

For the agroecological NI practice, the higher probability of not 
being infected by the disease contributes to the overall reduction in 
disease pressure in the territory, and especially for the agent-farmers 
with the NI practice. These agent-farmers have a high probability of 
having healthy fields, and thus their average yield and income increase, 
surpassing those of the intensive HI practice in an infected field. Farmers 
performing the HI practice therefore have an increasing incentive to 
change their practice. Following Malézieux et al. (2009), the higher 
disease escape rate is the advantage of an agroecological practice: it 
reduces the impact of pests and diseases and increases land productivity. 
Other studies (Kleemann and Abdulai, 2013; Milheiras et al., 2022) 
show a positive relationship between the intensity of agroecological 
practices and income or yield. In the territories favorable to the agro-
ecological NI practice, the number of infected fields and treatments used 
decrease. As shown by Scholberg et al. (2010) or Deike et al. (2008), 
alternative agroecological practices have the advantage of reducing 
weeds and pest infestation and thus reducing the quantity of pesticide 
treatments used. It is interesting to note that in the simulation, all the 
fields in the territory (for both practices) benefit from the disease escape 
of the agroecological practices because of a general limited transport of 
spores from field to field in the landscape. 

4.2. Threshold, linear, and non-linear effects 

The interactions between ecological and economic variables cause a 
non-linear response of the simulated indicators characterizing the ter-
ritory. This result is in line with studies on the socio-ecosystems of 
agricultural territories: environmental, economic, and social compo-
nents are closely linked and interact in a non-linear and complex way 
(Chen et al., 2023; Levin et al., 2013; Paz et al., 2020; Tittonell, 2014). In 
the model, the increase in the cost of pesticides has a threshold effect on 
the simulated proportion of agent-farmers in each type of practice in the 
territory, the increase in the disease dispersal capacity has a linear ef-
fect, and the increase in the probability of disease escape with the ag-
roecological practice has a more-than-linear effect in the simulated 
proportion. These factors do not induce the same trajectory territorial 
for the varied economic, ecological, and environmental indicators. For 
instance, for the increase in the dispersal capacity, we observe a linear 
effect for the proportion of farming practices and for the economic in-
dicators, but we did not observe the linear effect for the ecological and 
environmental indicators. These results are in line with the model of 
Sabatier et al. (2013) in which pesticide use has a non-linear effect on 
biodiversity and ecosystem services, leading to a negative effect on 
yield. 

4.3. Trade-offs 

The simulations highlight the trade-offs between the different in-
dicators characterizing the territory. These trade-offs are not linear and 
vary depending on the initial parameters of the simulated territory. 

There is a trade-off between the desire for a high average income and 
a reduction in the amount of pesticide treatments used. Higher pesticide 
use is associated with higher average incomes. This is in line with the 
negative relationships observed between production and ecology in 
conventional systems (Barraquand and Martinet, 2011; Drechsler et al., 
2007; Mouysset et al., 2015; Polasky et al., 2008; Sabatier et al., 2015). 
However, the model shows that the strength of this trade-off depends on 
the initial conditions. Indeed, Seufert et al. (2012) highlight that the 
differences between organic and conventional yields are highly 
contextual, depending on both system and site characteristics. In a 
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recent study about tropical farming systems, Wies et al. (2023) shows a 
similar result. They found a strong trade-off between conservation and 
economic profits that are depending on the total farming area, initial 
configurations and the number of external inputs used. This result en-
courages the proposal of payment for environmental services (Jaya-
chandran, 2023), in this case environmental health (through reduced 
use of pesticides), to compensate for this trade-off. 

However, the number of NI agroecological farmers and the number 
of infected fields do not always have the same relationship. A trade-off 
occurs when the cost of pesticides and the probability of desease 
escape increase, whereas the trade-off disappears when the disease 
dispersal capacity increases. The number of infected fields may also 
depend on the type of diseases. The study of Meunier et al. (2018) 
showed that organic farming has lower pathogen infestation, similar 
levels of animal pest infestation, and much higher levels of weed 
infestation relative to conventional farming. This result is also high-
lighted by Falconer and Hodge (2001) who showed that different 
pesticide tax specifications vary in terms of the magnitude and direction 
of their impacts and can have negative side effects. 

4.4. Refining policy formulation: suggestions based on research findings 

The model was built in order to allow simulating impacts of various 
levers across territories, considering their intensity, location, and impact 
proportions. In its current version however, the model does not explic-
itly incorporate policy instruments, but the simulations emphasize the 
importance of several types of incentives. Financial incentives (the 
introduction of taxes on pesticides or subsidies for alternative practices) 
or increasing the efficacy of alternative crop protection practices have 
quite a strong impact in changing practices in the simulated territory. 
Other incentives such as providing a safety net income earned in agro-
ecological farming or prevent any reversal to traditional farming in bad 
periods would be interesting to test with the model. The model also 
makes clear that policies that would reduce the external pressure of pests 
would significantly contribute to reducing the use of pesticides. It could 
be incentivizing ecological practices or agroecological infrastructures 
that would reduce pathogen pressure (i.e. the introduction of hedgerows 
(Ministère de l’Agriculture, 2023)). 

Additionally, the model lends itself to extensions and enrichments 
which can provide a deeper understanding of possible policies. While 
these are not developed in this paper, we now mention these possible 
extensions: a richer description of farmers’ beliefs and perceptions, the 
additional influence of non-pecuniary considerations on their decisions 
(Honoré et al., 2024), and social variables such as the introduction of 
local training or the creation and strengthening of networks of farmers 
committed to change (Meunier et al. 2024). 

4.5. Limits and perspectives 

In our model, we based our assumptions about decision-making on 
the bounded rationality theory (Simon, 1984), considering that (1) 
farmers consider the possibility of change if it exceeds a 
change-practice-threshold and that (2) the change is modeled as a sto-
chastic event with a certain probability. In this version of the model, the 
key factor is economic and based on both the profit of individual farmers 
and the average profits of farmers in the territory depending on the 
farming practices. Many studies have highlighted the role played by 
economic factors such as farm size, farm area, farm capital, land tenure, 
and income level in farmers’ decision-making to engage in 
agri-environmental practices (Baumgart-Getz et al., 2012; Floress et al., 
2017; Gachango et al., 2015; Mettepenningen et al., 2013; Mzoughi, 
2011; Toma and Mathijs, 2007). Nevertheless, several studies have 
shown that farmers’ decision-making process about their farming 
practice is also influenced by non-economic factors (Dessart et al., 2019; 
Lastra-Bravo et al., 2015) such as social (e.g., social norms in Le Coent 
et al. (2021)), dispositional (e.g., sense of responsibility in Walder and 

Kantelhardt, 2018), environmental factors (e.g., environmental concern 
in Amblard (2019) and Giovanopoulou et al. (2011) or the perception of 
environmental risk in Toma and Mathijs (2007)) and individual 
behavioral factor (Meunier et al., 2024). This is why we have a 
parameter in the model accounting for the farmer resistance to change 
but that we have not varied in the presented simulations (data not 
shown). Other factors have also been highlighted as influencing pesti-
cide use, as traditional culture (e.g., Zhang and Li (2016) where farmers 
excessively use pesticides due to traditional culture), farmers’ classifi-
cation and proportion of each class (e.g., Bourceret et al., 2023). The 
framework of the model has been done to make it easy to take into ac-
count other factors in the decision-making rule such as individual 
sensitivity (a parameter is in the model) or social interactions (with the 
knowledge for each farmer of the location of other farmers and the 
possibility of creating networks of connected farmers). Participation in 
farmers’ groups has been shown to be important for change (Karaya 
et al., 2020). This is an important perspective for our work. 

Second, in the model, we have considered social interaction between 
farmers, but in this version, we assumed that it is focused on knowledge 
of other farmers’ profits. Nevertheless, other various social interactions 
could have been used as revealed in the literature. Several studies have 
highlighted the role of social factors, specifically various social norms. 
Le Coent et al. (2021) and Kuhfuss et al. (2016) demonstrated that 
farmers’ decision to participate in an agri-environmental program was 
influenced by an injunctive norm (i.e., the desire to comply with the 
rule) and a descriptive norm (i.e., the desire to behave like the group). 
Showing one’s environmental commitment to others can also influence 
farmers’ adoption of pro-environment practices (Mzoughi, 2011). One 
perspective of the current work would be to improve the model with a 
factor relating to the social norm. For example, the farmers would be 
aware of the practices of other farmers in their social network (Bourceret 
et al., 2022). 

Finally, one remaining challenge is to perform empirical studies to 1) 
calibrate our model on a territory with real-world data on the charac-
teristics of the farmers, environment, and decision-making processes; 2) 
refine the model so that it is closer to certain dynamics that we want to 
study specifically. The model could be applied with empirical data to 
different territories, provided that the necessary calibration data are 
available. For instance, the agricultural characteristics (e.g., size, loca-
tion, type of farming systems) could be defined using data from the 
French agricultural census (e.g., Xu et al., 2018). Decision-making pro-
cesses, with the choice of different factors influencing the farmers and 
the decision model, could be determined using serious games (e.g., 
Noeldeke et al., 2022) or surveys. The territories may be different in 
term of types of farmers, yield profiles, technical coefficients of prac-
tices, types of pathogens. Climatic data such as temperature, humidity 
and wind could be taken into account. These variables can be integrated 
using geographic information system (Tveito et al., 2005). They would 
provide a better simulation of both disease development and yield. The 
advantage of using this model applied to a particular territory would be 
to apply levers that are of interest to local farmers obtaining results 
linked to the territory. . We think an interesting prospect would be to 
carry out the model calibration, scenario definition and simulation an-
alyses with local stakeholders (Lacombe et al. 2018). 

5. Conclusion 

We presented a modeling framework of a territorial socio-ecosystem 
that takes spatial and temporal dimensions into account. This ecological- 
social model enabled us to explore the impact of economic, ecological, 
and agronomic factors on the trajectory and equilibrium of territories 
agroecological transition. Our results show the following: (1) policies for 
pesticide reduction should take into consideration the complex in-
teractions between ecological dynamics and farmers’ decision-making 
in terms of practices; (2) agroecosystems are subject to threshold, 
linear, and more-than-linear trajectories according to different factors 
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variation; and (3) various trade-offs exist between ecological, economic, 
and agronomic indicators. Next important steps would be to calibrate 
and discuss territorial levers in a territorial context with farmers 
(Lacombe et al., 2018) and to take into account diversity of farmers in 
the model (Meunier et al., 2024) and specificity of the territories 
(Honoré et al., 2024). 
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Appendix 1 

Table of parameters and variables 
* P: parameter; V: variables 
Table of parameters and variables relative to agent-farmers  

Type* Name Description Notation Domain Unit 
P Domain size Number of cells N  w.u. 
P Change-practice-threshold of 

farmer 
Change-practice-threshold at which the farmer i starts to be willing to change farming practice vi [0; 1] w.u. 

V Practice Farming practice of the farmer i in year t ki,t {NI, HI} w.u. 
V Field epidemic status Status of the epidemic in the field of the farmer i in year y si, t {0; 1} w.u. 
V Probability to be infected Probability for the field of the farmer i to be infected at each year t. ui, t [0; 1] w.u. 
V Number of treatments Number of treatments of pesticides used by the farmer i in year t qi, t [0, 1, 2] w.u. 
V Yield Relative proportion of the maximum potential yield of the field of the farmer i in year t yi,t [0; 1] w.u. 
V Relative proportion of profit Relative proportion of the maximum potential profit of the field of the farmer i in year t πi,t [0; 1] w.u. 
V Escape probability The probability of the field of the farmer i in year t to escape from the disease and be healthy hi,t [0; 1] w.u. 
V Profit comparison metric The willingness of the agent-farmer i in year t to have a profit higher than the average profit of other farmers 

performing the same practice a. 
χa→b

i,t [0; 1] w.u. 

V Probability of change Probability of change of farmer i from its practice a to the farming practice b in year t pa→b
i,t [0; 1] w.u.  

Table of parameters and variables relative to practices  

Type* Name Description Notation Domain Unit 
P Number of treatments of the practice a Number of treatments of pesticides for each practice a qa,s [0; +infinity 

[ 
treatment 

P Relative proportion of yield of the 
practice a 

Level of yield of the practice a with the epidemic status s (proportion relative to the 
maximum yield) 

ya,s [0; 1] w.u. 

P Maximal potential yield Maximal potential yield ymax,a [0; +infinity 
[ 

T/ha 

P Escape probability for the practice a Probability of escape of the farming practice a ha [0; 1] %  

Table of parameters and variables relative to economy  

Type* Name Description Notation Domain Unit 
P Maximal potential profit Maximal potential profit πmax [0; +infinity [ € 
P Selling price Selling price per yield w [0; 1] w.u. 
P Cost per treatment Cost per treatment of pesticides c [0; 1] w.u.  

Table of parameters and variables relative to pathogen 
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Type* Name Description Notation Domain Unit 
P Dispersal capacity Probability of infected fields infecting the field d [0; 1] % 
P Radius of dispersal Maximum distance at which the disease can disperse r [0; N/2] ? 
P Inoculum Additional probability to be infected at each year l [0; 1] %  

Appendix 2

Fig. A2. Share of infected fields (i.e., number of infected fields in the landscape (eHI
t and eNI

t ) divided by the proportion of different types of farming practices in the 
landscape (kHI

t and kNI
t )). Each column (A, B, and C) corresponds to simulation for different set of parameters: A – Economic scenario corresponding to increase in 

pesticide cost; B – Ecological scenario corresponding to spore dispersal capacity; C – Practice efficiency scenario, corresponding to the ability of the agroecological NI 
practice to escape disease. All mathematical symbols are defined in Table 2. 
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INSEE, 2020. Exploitations agricoles. https://www.insee.fr/fr/statistiques/4277860? 
sommaire=4318291 (accessed 3.12.24). 

Jayachandran, S., 2023. The inherent trade-off between the environmental and anti- 
poverty goals of payments for ecosystem services. Environ. Res. Lett. 18, 025003 
https://doi.org/10.1088/1748-9326/acb1a7. 

Karaya, R.N., Onyango, C.A., Ogendi, G.M., 2020. The Effect of Participation in Farmer 
Groups on Household Adoption of Sustainable Land Management Practices in 
Kenyan Drylands. Asian J. Agric. Ext. Econ. Sociol. 66–80. https://doi.org/10.9734/ 
ajaees/2020/v38i1130454. 

Kleemann, L., Abdulai, A., 2013. Organic certification, agro-ecological practices and 
return on investment: evidence from pineapple producers in Ghana. Ecol. Econ. 93, 
330–341. 

Knapp, S., Van Der Heijden, M.G.A., 2018. A global meta-analysis of yield stability in 
organic and conservation agriculture. Nat. Commun. 9, 3632. https://doi.org/ 
10.1038/s41467-018-05956-1. 
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Le Coent, P., Préget, R., Thoyer, S., 2021. Farmers follow the herd: a theoretical model on 
social norms and payments for environmental services. Environ. Resour. Econ. 78, 
287–306. 

Le Gal, A., Robert, C., Accatino, F., Claessen, D., Lecomte, J., 2020. Modelling the 
interactions between landscape structure and spatio-temporal dynamics of pest 
natural enemies: implications for conservation biological control. Ecol. Model. 420, 
108912 https://doi.org/10.1016/j.ecolmodel.2019.108912. 

Lescourret, F., Magda, D., Richard, G., Adam-Blondon, A.F., Bardy, M., Baudry, J., 
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