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Abstract
Precision Agriculture Technologies (PATs) are providing a great potential in alleviating 
adverse impacts arising from climate change. This study evaluates the decision-making 
process of farmers regarding the adoption and implementation of PATs in potato agricul-
tural cooperative in Northern Greece. For this purpose, a bio-economic model utilizing 
mathematical programming techniques was designed and applied to three different farms 
producing Protected Geographical Indication (PGI) potato of Kato Nevrokopi. The pro-
posed model aims to incorporate the existing management methods of farming systems 
and their associated characteristics. Its objective is to analyse the aspirations of farmers 
to adopt new practices, considering agronomic, environmental, and policy limitations. 
Special focus was paid to two distinct scenarios: (a) subsiding PATs adopters or (b) penal-
izing the non-adopters. Results indicated that subsidy provision 594–650€/ha would have 
a greater impact on PATs profitability. Lastly, based on the results, further explanations 
of incentives towards promoting the adoption of novel practices, ensuring the long-term 
viability of agricultural systems, are proposed.
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Introduction

The agricultural sector faces dynamic challenges driven by population growth, the reduc-
tion of available resources and the ever-increasing consumer need for products that meet the 
principles of sustainability. The incorporation of modern technology into agricultural sys-
tems promotes production and efficiency, while minimizing natural resource exploitation. 
International Society of Precision Agriculture states the transformation of temporal, spatial 
and individual data towards the increase of agricultural performance can be perceived as 
Precision Agriculture (PA) (ISPAG, 2021). PA Technologies (PATs) can contribute to the 
economic, environmental, and social aspects of agricultural field, as the newly introduced 
Common Agricultural Policy (CAP) suggests. PATs can support the achievement of sus-
tainable development by 2050 (Bucci et al., 2018), while contributing to circular economy 
transition at the same time (Kleisiari et al., 2021). Their contribution to each field of sustain-
ability is considered essential to ascertain their importance towards the achievement of the 
CAP objectives.

More precisely, from an economic standpoint, PATs can enhance farm management and 
lead to more reasonable data-driven decisions (Rozenstein et al., 2023; Schimmelpfennig 
& Ebel, 2016).For instance, Al-Amin et al. (2023) have proved the feasibility of decreasing 
from 15€ to 45€/ton on wheat cultivation depending on field’s shape, when autonomous 
machines were used. Labour cost minimization is another aspect that PATs be considered 
advantageous in comparison with conventional practises(Shang et al., 2023). Moreover, 
PATs can operate as a resiliency factor to the continual decline in human agricultural labour, 
ensuring the completion of each agricultural activity within a specific time range (Salimova 
et al., 2022). However, the initial investment cost should be regarded as a limiting factor in 
the PATs deployment. (Hanson et al., 2022; Yigezu et al., 2018).

Furthermore, the application of PATs is accompanied with agronomic and environmental 
benefits (Koutsos & Menexes, 2019) towards the achievement of sustainability. Environ-
mental impact can be diminished by implementing only the quantities of resources needed 
in each case such as irrigation (Bwambale et al., 2022), fertilizers (de Lara et al., 2023) and 
pesticides (Shearer et al., 2021). Moreover, Life Cycle Assessment methodology has been 
applied to quantify the benefits of PATs adoption. Denora et al. (2023) have estimated an 
overall 10% decrease of environmental impacts, when applying variable rate technology on 
fertilizing compared to the conventional method. Another aspect of PATs is that they can 
operate with higher accuracy levels, conducing to the conservation of local biodiversity 
(Capmourteres et al., 2018).

Social dimension is the least explored one, when it comes to PATs adoption. Although 
numerous research were conducted to study the effect of socioeconomic determinants of 
adopters, which may be called social features, the interaction of PATs with rural communi-
ties can be further examined. For example, Pathak et al. (2019) in their extended literature 
review are assessing the influence of communication to farmers social network and social 
media, a crucial factor for providing appropriate incentives to non-adopters. Key findings of 
Busse et al. (2014) suggest that co-operation of all involved stakeholders (precision farming 
industries- consulors-farmers) should be examined thoroughly, to identify the barriers in 
late adoption stages.

Apart from the European Commission’s (EC) guidelines, farmers ought to face numer-
ous impacts of Climate Change (CC) such as higher temperatures, water scarcity etc. (Clapp 
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et al., 2018). An adaptation needs to happen to maintain the sector’s economic viability and 
mitigate CC effects. PATs adoption is capable of securing farmers income, cover the ris-
ing global food demand, while following more environmentally friendly farming practices. 
(Shafi et al., 2019). More precisely, Gardezi and Bronson (2020) have proven that the higher 
the environmental risks the higher the adoption rate of PATs. Greenhouse Gas Emissions 
(GHG) reduction is another area to which PATs may assist in both the agricultural and live-
stock sectors (Balafoutis et al., 2017; Soto et al., 2019).

Although precision agriculture creates opportunities to improve farm efficiency and long-
term environmental and social benefits, its adoption rate among farmers remains quite low 
(Barnes et al., 2019a, b, c; Lowenberg-DeBoer & Erickson, 2019). The main reason of this 
is that adoption is a gradual process, which heavily depends on a large series of character-
istics/incentives that influence the decision-maker (farmer) (Daberkow & McBride, 2003; 
Groher et al., 2020; Kendall et al., 2022; Vecchio et al., 2020). Economic factors can heavily 
influence farmers to non-adoption (Ammann et al., 2022). That is the reason why low cost 
applications and provision of monetary support are needed (Kendall et al., 2022). Barnes et 
al. (2019b) have performed a survey including 971 EU arable crop growers, concluding that 
the economic support and lower taxation can act as drivers towards PATs adoption, while 
they suggested policy expectations towards the same direction.

On top of the economic constrains, there are several other barriers for PATs adoption. For 
instance, Mozambani et al. (2023) have assessed 131 farmers to identify factors that affect 
adoption of PATs. Their findings indicate size of agricultural holding, increased require-
ments at the processing stage and the perception of farmer for higher yields can be effective 
predictors for PATs adoption from farmers’ side. It should be mentioned thatGroher et al. 
(2020) have identified differences between crop types (e.g. vegetable and arable crop pro-
ducers over fodder crops and grapes), signifying the importance of farmers specialisation 
and their products connection with final consumers on PATs adoption process. Addition-
ally, Paustian and Theuvsen (2017) have found that experience, consultancy services and 
increased farm size are affecting PATs adoption as well. Lack of knowledge can be consid-
ered as a limitation factor as Khanna & Kaur (2023) suggest, especially of PATs of greater 
complexity (Vecchio et al., 2020).

The above mentioned studies examine the impact of external (social, organizational, and 
governmental) or internal (socioeconomic, attitudes, and beliefs) elements on PAT adoption. 
They do, however, conclude to the importance of enacting suitable legislative measures to 
further encourage PATs adoption. Predicting the adoption rate of new agricultural practices 
by farmers is a challenging procedure that includes farmers, agricultural experts/research-
ers, enterprises and policy makers (Kuehne et al., 2017).

Proposition of accurate policy measures that will increase PATs adoption, is a demand-
ing and high skill process. Tey and Brindal (2012) provide potential policy implications in 
their literature evaluation, hence their methodology is purely qualitative, lacking a quanti-
fied impact of the proposed policy measures. Same qualitative approach is followed by 
Lajoie-O’Malley et al. (2020) after reviewing 23 documents for policymaking in digital 
agriculture era from high influential organizations/entities. However, quantified approaches 
are highly needed to describe current situation in an explicit way and propose target values 
that can be monitored after the activation of the proposed policy measure/framework (Huber 
et al., 2023). For instance, Shikur (2020) has explored the policy implementation of 4 dif-
ferent scenarios regarding irrigation management of Oronia region through Computable 
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general equilibrium (CGE) model. The outcomes of this survey suggest that PATs adop-
tion not only contribute to the enhancement of on-farm efficiency and productivity but also 
have a positive impact on local societies. Similarly, Schieffer and Dillon (2015) explored 
policy-farmer interactions to evaluate the impact of PAT adoption. Their results indicated 
that penalty policies have a negative effect on the new technologies adoption, meaning that 
a positive approach through subsidizing the adopters is recommended. However, it should 
not be neglected that efforts had been made to predict the adoption rate of PATs based on 
ADOPT technique.

This study incorporates the CAP (2023–2027) guidelines for the production of environ-
mentally friendly products and the enhancement of rural development, while at the same 
time it assesses technology adoption in Kato Nevrokopi Potatoes, which is a Protected Geo-
graphical Indication (PGI) product (European Commission, 2021). In this context, a col-
laboration between the University of Thessaly, Nitlab, and NEVROCOOP – IKE (potato 
producers cooperative) allowed the development and testing of Precision Agriculture 
equipment, targeting water use efficiency and insecticide use optimization. In fact, Kato 
Nevrokopi is located is northern Greece and despite its cold winters, recent years it experi-
ences water shortage (Petalas et al., 2018). Therefore, the objective of this study is to assess 
farmers’ adoption decision process towards the proposed Precision Agricultural practices in 
potato production systems in Northern Greece. Based on the literature review results, there 
is a limited number of surveys that provide accurate policy guidelines. This is the reason 
why special focus is given on quantified policy suggestions and their impact to increase 
PATs adoption rates, through the implementation of a bio-economic model. Indeed, despite 
the advantages of bio-economic models in assessing farmers decision-making process, 
similar studies are rather scarce in the literature (e.g. Kleftodimos et al., 2021a, b; Ridier 
et al., 2013). In fact, in contrast with the aforementioned studies, bio-economic models 
simulate the complex interactions between biological processes, environmental factors, and 
economic decisions on a farm (e.g. Ridier et al., 2013; Mosnier et al., 2009). This allows for 
a more dynamic and realistic representation of farming systems compared to econometric 
models, which often rely on statistical analysis of historical data. Moreover, they consist a 
strong tool for decision-making via scenario simulations to better assess the potential out-
comes of different management practices, policy changes or market conditions (Watzold et 
al. 2006). Thus. in this study, two scenarios are examined (penalize non-adopters or subsi-
dizing adopters) with a view to assure a smooth transition from existing agricultural system 
to an innovative lower input one. Moreover, following the hydrological studies in the area 
(Petalas et al., 2018), we examined the above measures in the context of water scarcity.

The remainder of the paper is organized as follows. Section 2 describes the methodol-
ogy followed for the bio-economic model, while Sect. 3 presents the acquired results for 
the potato farmers of the cooperative. Further discussion on the outcomes of this study can 
be found in Sect. 4. Section 5 summarizes the key findings and suggest future guidelines.

Methodology

In this section,: (i) the bio-economic model and its’ constraints, (ii) the selected farms, and 
(iii) the proposed policy scenario are presented.
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i. The structure of the bio-economic model.

The bio-economic model maximizes farmers’ gross margins over one period under con-
straints for three selected farms in the region examined. At this point, the assumption that 
farmers were considered risk-averse towards the proposed management strategies should 
be underlined (Hardaker et al., 2015). The proposed model was constructed as a linear one 
by the use of mathematical programming methods in GAMS software (General Algebraic 
Modeling System).

The objective function has the following form:

 U = ΣRALc,n − Σ (ϕ ∗ std) (1)

where RAL was the income, φ was the risk aversion coefficient, std was the standard devia-
tion of the average income, and index c stood for the conventional practices, while index n 
was for the adoption of alternative management strategies. The standard deviation of aver-
age income was calculated as follows.

 std =
√

Σ(RALrdt− gmc,n)
2  (2)

where RALrdt is the random income according to each state of nature.
Here, farmers behaviour was expressed via the E-V context. Hazell and Norton (1986) 

introduced the concept of the “Environmental Variability (E-V) Rule” in their work on 
farm-level decision making under risk and uncertainty. The E-V rule suggests that farmers’ 
decisions regarding production and resource allocation are influenced by the variability of 
environmental conditions, particularly in relation to crop yields. In general, E-V rule refer to 
the mean-standard deviation model. In fact, the standard deviation describes the root of vari-
ance and consequently, the model represents the efficient set of crops that should be identi-
cal to the ones derived by the E-V model. The function number (2) has the advantage to be 
expressed in the same units as income, thus, it facilitates the interpretation of the findings. 
In addition, following Baumol (1963), it is assumed that income is normally distributed, 
and the risk aversion of the farmers is assessed by the use of a revealed preference approach 
(Charas and Holt, 1996).

In the estimation of the risk aversion coefficient, we tested several values within the 
interval of {0.5, 1.5], following the methodology outlined by Hazell and Norton (1987). 
These values were chosen to encompass a range of risk attitudes commonly observed in 
agricultural decision-making contexts. However, for the sake of brevity and clarity, we did 
not exhaustively list each individual value tested. During the calibration of the model, the 
Percentage of Absolute Deviation (PAD) was used as an indicator. The PAD takes the fol-
lowing form and evaluates the representativeness of our model by calculating crop-pattern 
variability:

 

PAD =

∑n
crop=1

∣
∣
∣
∣
−
Xcrop −Xcrop

∣
∣
∣
∣

∑n
crop=1

−
Xcrop
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where, X̄crop  represents the value observed, Xcrop the value simulated, and index crop rep-
resents the crop selection.

Following this methodology, a value of risk aversion coefficient equal to 1 was retained 
which corresponds to a moderate risk aversion according to the literature (Hardaker et al., 
2015).

The bio-economic model constraints

These constraints regard a variety of economic, agronomic, environmental, and public 
policies.

Land constraint

The sum of the cultivated surfaces should be less or equal to the total area of the farmland.

 

∑

crop,pc,s

x (crop, pc, s) ≤ farmland  (3)

where, x is the surface for each crop, associated with the previous crop (pc), for each type 
of soil (s).

Water constraint

The water resources in each farm-type were considered limited, hence the total use of water 
should be less or equal to the total water availability. Thus,

 

∑

c,m,pc,s,i,qs

cai (crop,m)× x (crop, pc, s) ≤ WATER) (4)

where, cai(crop, m) is the water use per calendar month per crop (m3 ha− 1), and WATER is 
the total water availability per farm. This constraint ensures that the total water consump-
tion by all crops (summed over all crops, fields, and irrigation systems) does not surpass the 
available water resources on the farm. If the available water is insufficient to meet the water 
requirements of the selected crops, the constraint would indeed necessitate adjustments such 
as shifting to crops with lower water requirements or reducing the cultivated area to match 
the available water resources.

Labour constraint

The labour availability of each farm was composed of family labour and occasional sea-
sonal workers. Hence,

 

∑

crop,cow,h

Laborcrop,h ≤ workfamh + workersh  (5)
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where, Laborcrop,h  is the total hours devoted to crop production, workfamh  was the total 
family labour availabilities, and workersh  was the hired labour.

Crop rotation

A crop rotation constraint was proposed as well, which restricts the selection of crops by 
the farmer. This constraint has been added to better represent the real case practices where 
potato growers alternate their cultivation with soft wheat, which is the commonly followed 
practice from Kato Nevrokopi potato farmers as arose as a feedback of local agronomists 
and its cultivation can be verified by Mavromatis (2015). According to this constraint, the 
cultivation surface of a crop is limited by its allowed precedents. To produce a matrix of 
crop precedents data obtained by personal interviews were used. Consequently, the con-
straint has the following form:

 

∑

crop,s

x (crop, s) ≤
∑

pc,s

x(pc, s) (6)

where, 
∑

pc,s x (pc, s) is the surface of the precedent crop in each soil type.

Public policy constraints

The model includes all the necessary constraints of the Common Agricultural Policy in 
order to receive the Basic and Greening payments (European Parliament, 2015). Concern-
ing crop production, the farmer has to follow the three constraints regarding permanent 
grasslands, crop diversity, and Ecological Focus Areas (EFA). Hence, the constraints have 
the following form:

 ● Permanent grasslands.

Permanent grassland must always be maintained in the agricultural systems and should be 
no less than 5% of the total area of the farm. Hence,

 

∑

crop
x′′gl′′ ≥0.95×

∑

cropo
x′′glo′′  (7)

where, 
∑

crop x′′gl′′  is the permanent grasslands, while the 
∑

cropo x′′glo′′  is the permanent 
grassland observed in the baseline year, which is 2021.

 ● Crop diversity.

According to this constraint, every farm which exceeds 10 ha must cultivate at least two 
different crop species every season, where each crop must not exceed 75% of the total cul-
tivated land. Following the article of (Kleftodimos et al., 2021a, b), the following constraint 
was adopted:

 

∑

crop
x′′m′′ ≤ 0.75× LANDV  (8)
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where, 
∑

crop x′′m′′  is the cultivated area of the main crop, and LANDV is the total culti-
vated land of the farm.

Lastly, farms that exceed 15 ha are obliged to dedicate 5% of the total utilized area as an 
EFA. Hence, Eq. (8), for the farms with a size over 15 ha can be:

 

∑

crop

Xcrop ≤ 0,95 × LANDV  (9)

ii. Farm-selection.

For the simulations of the proposed model, three farms characteristics were selected in the 
region of Kato Nevrokopi. With the guidance of 9 agricultural experts in total (5 agrono-
mists of the region, 2 farmers of 20 + years’ experience and 2 experts on crop production 
from the University of Thessaly), three farms were selected, which represented the majority 
of the existing agricultural systems in the greater area of Kato Nevrokopi, based on the pre-
vailing climatic conditions as well as the different agronomic characteristics such soil type 
and field capacity (Table 1).

In general, all the farms of the selected region follow a two-year crop rotation pattern, 
between potato and soft wheat; where the potato cultivation takes place during the spring-
summer period of the first year, followed by the cultivation of soft wheat, during the spring-
summer period of the next year. By way of explanation, a part of the total utilized area of 

Table 2 Scenario characteristics and their impact on farm management and risk
Policy 
measure

Impact on farm management after the adoption 
of the novel practices

Impact on risk after the adop-
tion of the novel practices

Sce-
nario 1

Subsidy / 
Premium

20–25% decrease in the following operations: 
water use for irrigation, insecticide use (Adey-
emi et al., 2018)
10–20% increase in labour needs (van Evert et 
al., 2017)

0–10% yield increase & 15% 
decrease in yield variability;
Risk aversion (Ahmad & 
Sharma, 2023; Akkamis & Cal-
iskan, 2023; King et al., 2005)

Sce-
nario 2

Penalty 20–25% decrease on the following operations: 
water use for irrigation, insecticide use (Ad-
eyemi et al., 2018)10–20% increase in labour 
needs (van Evert et al., 2017)

0–10% yield increase & 15% 
decrease in yield variability;
Risk aversion (Ahmad & 
Sharma, 2023; Akkamis & Cal-
iskan, 2023; King et al., 2005)

Features Farm 1
(n = 30)

Farm 2
(n = 15)

Farm 3
(n = 5)

Total Agricultural Area (ha) 5.8 10.4 22.6
Crop Rotation Yes Yes Yes
Gross-Margin (€/ha) 1,156 1,231 1,079.6
Operational costs (€/ha) 496 459 488
Potatoes surface (ha) 3.5 7.2 15.7
Soft-Wheat surface (ha) 2.3 3.2 6.9
Permanent Grassland 5% 5% 5%
EFAs 0% 0% 5%
Number of family workers 2 2.5 2.8
Family labour (hours/year) 1200.5 1424.2 1588.01

Table 1 Characteristics of the 
selected farms
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the farm is cultivated with the main crop (potato) and the rest with the second crop (soft 
wheat); in the next year, the same will occur but vice versa: the part that has been cultivated 
with potato the first year will receive soft wheat and the part that used to have soft wheat 
will now be seeded with potato.

iii. Proposed management strategies and public policy incentives.

The proposed technologies aimed at alternative farm management. More specifically, there 
are two main sub-fields where the proposed PAT is expected to alter inputs used for the 
cultivation of potatoes; increasing the water for irrigation efficiency and the insecticide used 
to control the population of Phthorimaea operculella. The first sub-field is to be achieved 
through monitoring of weather conditions and soil moisture, with on-field sensors. The 
gathered data will provide the software user/farmer with a valuable real-time piece of infor-
mation about the water state of the crop, to optimize the irrigation plan that he/she follows. 
Following an increasing great body of literature, the optimization of irrigation practices, 
especially via precision irrigation and the use of sensors, optimises as well the nutrient 
application that decreases yield variability (e.g. King et al., 2005). Moreover, the study of 
Ahmad and Sharma (2023) elaborated an intensive literature review on the economic and 
environmental benefits of Precision Agricultural Technologies on potato yields. According 
to this study, precision irrigation practices increase potato yield by up to 30%, averaging 
8.5%. Thus, following this study, we assume conservatively that the adoption of the pro-
posed practices will increase yield between 0 and 10%. Similarly, the study of Akkamis and 
Caliskan (2023), showed that irrigation variability has a significant impact on potatoes yield 
and quality. Indeed, proper irrigation by the use of PATs may reduce yield variability by 
27.3%. Consequently, this study adopts conservatively a 15% reduction on potatoes yield 
variability after the adoption of the proposed practices (Akkamis & Caliskan, 2023).

Likewise, the latter sub-field is possible by an on-field matrix of “smart” traps that can 
count in real-time the population of the potato pest Phthorimaea operculella. If the popula-
tion level of the insect is above the favourable set percentage, then insecticide needs to be 
applied. In this manner, it is expected that no insecticide for prevention purposes will be 
spread, if there is no necessity, as well as the applied doses, will be more precise, depending 
on each occasion. A noteworthy piece of information that was taken into consideration, due 
to its potential influence on the acceptance/adoption by the end-user (Barnes et al., 2019a) is 
the total cost for the installation and maintenance of the equipment; which in this case was 
€2,550/set and approximately 500€/year (maintenance cost). However, even though the pro-
posed practices decrease significantly the operation costs and secure the yield, they require a 
significant increase in working hours and reallocation of these hours within the year which 
heavily affect the production costs and the working calendar of the farmers.

Two policy scenarios were tested to examine farmers’ adoption of the proposed PAT in 
Table 2. These scenarios examined the possibility to adopt through financial means; Sce-
nario 1 included an incentive in a form of a subsidy and Scenario 2 imposed a penalty. More 
precisely, the first scenario was built, having in mind that precision farming practices that 
include the reduction of inputs and the improvement of irrigation efficiency are eligible to 
be financially supported by the upcoming Eco-schemes, which will be set by each Member 
State in light of CAP 2023–2027. Regarding Scenario 2 and having in mind the European 
Union’s short and long-term Green Deal targets, a penalty was introduced, that discourages 
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farmers from upholding the same conventional farming practices and retaining the same 
volume of inputs since a more sustainable proposed solution exists and lower-input farming 
systems are required. Hence, here PAT technologies emerge as an alternative management 
to help the farmers attain the low-input goals. In addition, the above two scenarios were 
examined also in the context of water scarcity. As said it was above mentioned, following 
the study ofPetalas et al., (2018) severe droughts may occur in this area during the sum-
mer months, which affect the water availability of the examined production systems. This 
phenomenon may be aggravated in the future due to climate change. Hence, following the 
consultation of the local experts, simulations in a water scarcity context by adjusting the 
“irrigation constraint” were performed. A 10% reduction in water availability was tested for 
each policy measure/scenario, compared to the baseline situation (Scenario 1’, Scenario 2’).

The objective of both scenarios was the smooth transition from the current farming sys-
tem to a novel lower input one that will meet the required environmental standards and 
deliver a satisfactory level, quantity/quality wise, of production, securing the income of 
the farmers. In the model, both scenarios were introduced as parameters. Therefore, we 
conducted an iterative process, systematically introducing various values ranging from €0/
ha to €200/ha, to analyze farmers’ adoption rates in optimizing crop mix decisions across 
different penalty levels and premiums, on top of the current financial support that they used 
to obtain from the previous CAP. Finally, the year 2021 has been retained as a baseline sce-
nario as it was the year of data collection.

Results

The results obtained for the three farms were compared with the baseline scenario. Conse-
quently, in this section findings are presented regarding the farm gross margins, and total 
costs of proposed subsidies or penalties. In general, according to the proposed scenario 
simulations, all farms seem to adopt alternative management practices and as a result, they 
experience higher gross margins and lower production costs. More specifically, the two 
simulated scenarios affect positively the farmer’s gross margins (Fig. 1) since the average 
increased percentage of income is 10.95% and 5.7%, for scenario 1 and scenario 2, corre-
spondingly. In the case of the 1st scenario, the gross margin increase derives mostly from 
the additional amount of subsidy and the decreased variable cost of inputs whereas, for the 
2nd scenario, this increase stems solely from the latter.

Regarding policy measures, it seems that all farms are willing to adopt under certain cir-
cumstances. Regarding the 1st scenario, the additional subsidy needed, besides the existing 
subsidy scheme that farmers already receive, is between 594 and 645 (€/ha). In particular, 
the required subsidy level to encourage farmers to adopt the novel practices is 645, 626 and 
594 €/ha, for Farm 1, Farm 2, and Farm 3, respectively. Analogously, for the 2nd scenario, 
the level of penalty that is enough to motivate farmers to prevent the loss of their income 
and reformulate their farming practices to the novel proposed ones is between 821 and 899 
(€/ha). More specifically, the monetary point that the penalty (income loss) is sufficient to 
convert the existing farming system into the novel one is 899 (€/ha) for Farm 1, 867 (€/ha) 
for Farm 2 and 899 (€/ha) for Farm 3. Both scenarios indicate that Farm 1 demands a higher 
level of subsidy (or penalty) to alter its current farming system and install the proposed 
PAT. It could be assumed that this happens due to its small farm size and its limited labour 
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resources, which makes it harder to be persuaded to alter its farming system, in comparison 
to the other farms. More specifically, in the case of Farm 1, the family labour covers most 
of the standard tasks of the cultivation, in terms of farm operations so, by adopting the 
proposed PAT, an additional level of risk occurs, since the new farming practices are more 
labour-intensive. This means extra hired labour and therefore more labour cost. However, 
the one that is the most willing to adopt is Farm 3 which is the largest and wealthiest one. 
Such farms have the available capital to invest in novel technologies, especially when there 
is an opportunity to decrease input costs per unit of area. Even though, at first glance this 
reduction is small; considering the total farmland and its costs, owners of large farms could 
save a noteworthy amount of capital.

Regarding the simulations under water scarcity, the results highlighted that in both sce-
narios the farmers are adopting the novel practices for significant lower incentives (Fig. 2). 
More specifically, in Scenario 1, the proposed incentive is reducing by 32.5%, 23.6%, and 
44.7% for Farm 1, Farm 2, and Farm 3, respectively. Similarly with the previous simula-
tions, the necessary incentive to convince Farm 1 to adopt the novel practices is signifi-
cantly higher in relation to other farms mostly due to the lower labour availabilities of this 
production system. As the proposed practices are labour intense, this farm requires to hire 
more seasonal workers, hence higher variable costs. On the contrary, Farm 3 adopt easier 
the novel practices with a much lower premium. In fact, as the water becomes scarcer, the 
farmers attribute higher values to the water constraint and consequently, they are more eager 
to adopt the proposed PAT for a lower premium.

Fig. 1 Economic outcomes of each scenario per farm
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Concerning Scenario 2 similar findings were obtained. The implementation of the pen-
alty motivates the farmers to adopt the novel practices for lower values in a range between 
7.45% and 23%. However, even if lower penalty levels are required, this measure seems to 
be less effective than the premium. For instance, for Farm 1 there is no significant difference 
in the level of the premium compared with the initial simulations. This results from the fact 
that Farm 1 has limited investment capabilities and required higher labour costs. As a result, 
for lower penalty levels, they prefer to pay the penalty than to invest in the novel practices 
even in the context of water scarcity.

Discussion

The simulations performed by this bio-economic model for three different characteristic 
farms regarding the adoption of PAT under different policy measures and water scarcity 
highlighted different findings. In general, the scenario simulations showed that different 
levels of policy incentives can be efficiently targeted to convince the local farmer to adopt 
the PAT practices. Nevertheless, the proposed levels varies between farms and depend on 
the different farm characteristics, such as profitability and labour availability.

More specifically, farmers seem to be willing to adopt the proposed PAT under both sim-
ulated policy scenarios (subsidy/penalty), since they can attain a higher income, by decreas-
ing their inputs. Based on the results of this study, for all three farms, the 1st scenario, 
which comes into a premium/subsidy form appears to be superior to the 2nd one (penalty) 
regarding its effectiveness in mobilizing farmers to adopt the proposed PAT; which is in 
line with several past studies that have drawn identical conclusions regarding the effective-
ness of these two policy measures (Kleftodimos et al., 2021a, b; Kleftodimos, Kyrgiakos, 
Kleftodimos et al., 2021a, b). PA tools can decrease the overall use of inputs or ameliorate 
the efficiency of the existing ones, due to the fact that farmers can achieve better timing and 
more targeted applications for pesticides, irrigation or other agricultural practices. However, 

Fig. 2 Impact of the decrease in 10% water availability on farmers’ intentions to adopt the proposed PAT 
(Scenario 1’ and Scenario 2’ represent farmers’ adoption intentions under the 10% total water decrease 
constraint)
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it still remains a limitation of this model that the proposed measures will have an horizontal 
impact on all farms and that the use of PA tools will affect the use and not the efficiency of 
the resources used.

According to the literature, wealthier farmers are more likely to be mobilized to adopt a 
novel technology/practice, which is justified by the study of Bocquého et al. (2013). In this 
case, Farm 3 is the wealthiest mainly because of its size, since the costs (€/ha) are similar 
across all the registered farms; it could be assumed that the farm size is proportionate to 
the gross margin. Farm size is a significant determinant that can heavily influence farmers’ 
decision-making process toward the adoption of PAT, since larger farms may have access to 
equity and monetary resources to invest in novel technologies (Lambert et al., 2015; Wang 
et al., 2010). Most studies that assess the influence of farm size agree that its proportionate 
increase plays a major role in the increase of the PAT adoption rate (Tamirat et al., 2018).

Not surprisingly, Farm 1, which is the smallest one in the area, requires the most mon-
etary resources/incentives (€), to adopt the proposed PAT. In such a small-sized farm, fam-
ily/unpaid labour is the main source of labour. That is mainly because this type of labour 
can cover most of the farm’s standard operational needs since every management operation 
is covered by the available family labour except the one of harvesting, which necessitates 
extra hired labour. High levels of unpaid/family labour to meet total labour needs can have 
a negative effect on PAT adoption, acting as a disincentive to take up the PAT (Schimmelp-
fennig, 2016). The number of studies that have identified labour availability and allocation 
as determinants influencing the adoption process of farmers follows an exponential trend in 
the literature. This is because farms with limited labour typically tend to focus on basic farm 
operations rather than investing and reallocating available labour to alternative practices 
which can be more technical and time-consuming (Kleftodimos et al., 2021a, b; Ridier et 
al., 2013).

Regarding the context of water scarcity, the results showed that in both scenarios the 
farmers are ready to accept lower payments or penalties to adopt PAT practices. As water 
becomes scarcer the adoption of the novel practices will optimize their irrigation manage-
ment and adapt suitably to the new situation by building more resilient agricultural systems. 
These findings are in accordance with previous studies which highlighted that in a water 
scarcity context, stakeholders are willing to adopt water efficient practices for lower incen-
tives (Dinar, 1992; Koundouri et al., 2006; Vermeer. J., 1951).

However, all the above proposed policy measure comes with a significant social cost 
(e.g. Kleftodimos et al., 2021a, b). In particular in Greece the existing payments, which all 
of them are under the 1st Pillar of CAP, varied between €100/ha and €1000/ha, while the 
median level of payments reaches the €610/ha which is the highest in EU (Kremmydas & 
Tsiboukas, 2022). Our findings are in this range and closest to the median which signifies 
that significant cost savings may occur if the above practices take the form of an Eco-
Scheme. Moreover, as the above practices may contribute to different ecosystem services, 
such as water quality and soil quality, they may be supported by the 2nd Pillar of CAP and 
implement the first Agri-Environmental Measure in Greece (Kleftodimos, Kyrgiakos et al., 
2021).

1 3



Precision Agriculture

Conclusions

The aim of this study was to the efficiency and analyse the intentions of three representative 
farms in a case study, towards proposed technological equipment, under two specific simu-
lated policy scenarios. To achieve this, a bioeconomic model was developed and applied 
through different policy scenarios.

Our main analyses and sensitivity analyses suggested that precision agriculture practices 
can improve potato cultivation for reducing the inputs used. By adopting these technologies 
and practices, farmers can preserve the overall amount of production while ameliorating 
the quality of final products. Subsidies to best performers seem to be a more appropriate 
practice than imposing penalties on the less efficient ones. Policymakers should be aware 
of this strategy when proposing new measures that include precision agriculture practices. 
This study contributes to a holistic approach to crop production, where decisions should be 
made based on real field data to reduce the risk of each decision, while on the other hand the 
proposed measures each time should have a realistic approach. Multiple scenarios should be 
studied for the same case to highlight the one with the greatest impact on the development 
of rural areas. Lastly, it should be stated that the knowledge and innovation CAP’s goal will 
further promote precision agriculture practices and it is of paramount importance how this 
can be achieved in practice.

However, our approach is subject to several limitations. For instance, as shown also in 
the Introduction section, behavioural factors can greatly influence the final decision of the 
farmer (Dessart et al., 2019). Moreover, farmers’ subjectiveness regarding PAT can vary, 
which is another factor, which has not been incorporated in this model (Malawska & Top-
ping, 2016). The influence of counsellors on farmers’ final decisions is a factor that poses a 
constraint to this study. Furthermore, the significance of agricultural cooperatives cannot be 
underestimated in these circumstances. They not only provide guidance to farmers regard-
ing the adoption of PAT, but also facilitate cost-sharing and mitigate the risks associated 
with such investments. Lastly, it should be noted that all participants in our study were 
affiliated with the local agricultural cooperative, which unfortunately limited our ability to 
evaluate the extent of this influence.
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