
ALIGNING GEO-TAGGED CLIP REPRESENTATIONS AND SATELLITE IMAGERY FOR
FEW-SHOT LAND USE CLASSIFICATION

Pallavi Jaina,b, Diego Marcosb, Dino Iencob,c, Roberto Interdonatob,d, Aayush Dhakale,
Nathan Jacobse and Tristan Berchouxa

a Mediterranean Agronomic Institute of Montpellier - CIHEAM-IAMM, Montpellier, France
b Inria, Univ. of Montpellier, Montpellier, France

c INRAE, UMR TETIS, Univ. of Montpellier, Montpellier France
d Cirad, UMR TETIS, Univ. of Montpellier, Montpellier France

e Washington University in St. Louis, USA

ABSTRACT

A major difference between ground-level and satellite im-
agery of landscapes lies in their semantic granularity: ground-
level images tend to offer details on objects and human activ-
ities, while satellite images provide broader geographic con-
text but, typically, with coarser semantics. This study aims to
leverage this complementary information by integrating fine-
grained insights from a ground-level view into the analysis
of satellite image data. To achieve this integration, we pro-
pose to align a satellite image representation with co-located
geo-tagged ground-level image CLIP representations. This
method focuses on enriching satellite image visual features by
leveraging the inherent visual characteristics found in ground-
level images as a reference in a contrastive manner, without
relying on additional textual information to guide the learning
process. We evaluate the quality of the learned representa-
tions on the EuroSAT benchmark in various few-shot settings.

Index Terms— computer vision, satellite images, land
use, contrastive learning

1. INTRODUCTION

Characterising land use patterns remains a critical task, en-
abling comprehensive assessments of geographical land-
scapes and their evolving features. These analyses provide
invaluable insights into the utilisation, transformation, and
management of land, particularly in rural areas. Exploiting
remote sensing data, like satellite and aerial imagery, has the
potential of furnishing crucial information for analysing and
interpreting land use patterns at a continental scale.

Approaches based on deep learning have been extensively
used to extract useful information from the vasts amounts
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of remote sensing data that are being produced daily. How-
ever, conventional methodologies often rely on extensive la-
belled datasets, limiting adaptability to new and diverse sce-
narios. Recent advancements in self-supervised learning, par-
ticularly contrastive approaches, offer opportunities to learn
useful representations without extensive labelled data. This
is done by leveraging natural co-occurrence patterns within
massive, unlabelled, datasets. For instance, DINO [1] uses
patches stemming from the same image, while CLIP (Con-
trastive Language-Image Pre-training) [2] leverages textual
captions associated to online images, thus exploiting a multi-
modal co-occurrence.

In practice, the CLIP framework comprises of text and
image encoders. The text encoder processes the textual de-
scriptions to generate embeddings that represent the semantic
meaning of the text. Simultaneously, the image encoder pro-
cesses images to produce embeddings that encapsulate visual
features present in the images. These encoders work in tan-
dem to establish a joint embedding space where text and im-
age embeddings share similarities. This allows CLIP frame-
work to learn the similarity between any text-image pair, re-
sulting in high similarity only when the text adequately de-
scribes the image.

This enable CLIP as a tool to explore possible interpreta-
tions of a given image via natural language. However, its fo-
cus on natural images found online presents a challenge when
dealing with the specificities of remote sensing data, limiting
its effectiveness in remote sensing data analysis and contex-
tual understanding of land use patterns. This is not only due
to differences with respect to the sensors used, but also with
the kind of views captured by space- and air-borne cameras;
remote sensing imagery often provides coarse details, with
much lower spatial resolution than typical ground-level pho-
tos, about objects that may help infer useful characteristics of
a landscape, such as land use, that are not adequately captured
within the CLIP embedding space [3].

One way of improving the CLIP representation of remote



sensing images, as proposed in RemoteCLIP [4] is to fine-
tune the CLIP image encoder on a set of captioned remote
sensing images, in line with CLIP’s text-image similarities.
This framework targets specialised feature learning designed
for remote sensing. However, its dependence on labelled data
persist, since it requires a curated set of text-image pairs.

In order to eliminate the need for curated labels, another
option, as proposed in [3], is to add a new modality of freely
available pair data, in the form of pairs of remote sensing
images and co-located geo-tagged photos. The latter already
provides rich semantic information via the pre-trained CLIP
image encoder, meaning than only one additional model
needs to be trained in order to encode the remote sensing im-
ages. In our work, we thus leverage cross-view geo-localised
images to capitalise on the potential of ground-level images
as superior feature descriptors to remote sensing images.
Cross-view approaches have been extensively employed in
various studies to comprehend image similarity, localisation,
and orientation [5, 6, 7].

Our methodology involves leveraging CLIP’s knowledge
acquired from natural images to extract frozen ground-level
feature embeddings. We then fine-tune another CLIP image
encoder using Bing/Sentinel images, adapting CLIP’s embed-
ding space for remote sensing data by incorporating ground
images. Hence, this work harnesses the advantage of CLIP’s
comprehension of detailed ground-level features to improve
its understanding of remote sensing data, creating a mutually
beneficial relationship between the two domains.

We train the remote sensing image encoder using the geo-
tagged ground level images of the LUCAS project [8] paired
with two different satellite modalities: (i) very high resolution
images provided by Bing Maps and (ii) Sentinel-2 images.
We evaluate the learned representations on EuroSAT, a land
use / land cover classification benchmark.

2. METHOD

The proposed framework links ground-level and satellite im-
age data through their spatial coordinates, as illustrated in
Figure 1.This allows to align satellite-derived data with the
manifold of the original CLIP embeddings, thus allowing to
interact with satellite data using textual descriptions from a
ground-level perspective.

We initiate the process by extracting ground-level im-
age embeddings using the frozen CLIP encoder. We then
fine-tune a separate encoder using satellite imagery, aiming
to align its representation with the co-located ground-level
CLIP representation.

2.1. Dataset

Ground-level image data utilised in this study were sourced
from the LUCAS dataset [8], a comprehensive rural survey
dataset encompassing Land Use and Land Cover information

Fig. 1. Bing and Sentinel images collected across Europe
from the same locations as geo-tagged LUCAS photos

.

across Europe. This dataset spans multiple years, including
data from 2006, 2009, 2012, 2015, and 2018. Specifically,
our work focuses on leveraging the LUCAS 2018 dataset,
which comprises approximately 235,000 geo-tagged loca-
tions. Each location is associated with four directional images
(north, east, west, south), resulting in an aggregate of about
900,000 images.

Bing and Sentinel-2 images were collected for their
unique strengths: Bing for high-resolution details in specific
regions, and Sentinel-2 for broader coverage despite lower
resolution, ensuring a fair comparison in data utilisation for
training. The images were obtained to cover approximately
1 sqkm around geographical location from the LUCAS 2018
dataset. For Bing aerial data, we utilised Bing Maps API with
specific parameters: a zoom level of 18, and 500 x 500 pixels
image size.

In a similar fashion, Sentinel-2 data is accessed using the
Planetary Computer API [9]. The data retrieval strategy fo-
cused on obtaining imagery corresponding to specific months
and years from the LUCAS dataset. Cloud coverage filtering
was implemented to select images featuring less than 10-20%
cloud cover. The acquired Sentinel-2 data consisted of RGB
bands, offering imagery at a resolution of 10 meters per pixel
and dimensions of 100 x 100 pixels per scene.

2.2. Approach

We use pairs of ground-level image quadruplets and satel-
lite images, denoted as {(Y1,x1), (Y2,x2), . . . , (YN ,xN )}.
With Yi = {yi,1,yi,2,yi,3,yi,4} the quadruplet of ground
level images corresponding to the ith location. The frozen
embeddings are obtained from ground-level images using the
pre-trained CLIP encoder, gi,k = fG(yi,k). Simultaneously,
the satellite image encoder si = fs(xi) is initialised with the
original CLIP image encoder and undergoes fine-tuning with
Bing and Sentinel data, resulting in modified models referred
to as BingCLIP and SenCLIP respectively.



Fig. 2. Architecture: Frozen CLIP encoder (fG) extracts
ground-level embeddings, while a separate CLIP encoder (fs)
is fine-tuned using Sentinel/Bing images. Comparing these
embeddings aligns CLIP features with satellite images while
maintaining proximity to ground-level context.

For each location, the frozen embeddings correspond to
four LUCAS directional images. To consolidate these into
a single embedding Gi per location, represented by a set
of quadruplet embeddings {gi,1,gi,2,gi,3,gi,4}, an average
pooling operation is performed as follows:

Gi =
1

4

4∑
k=1

(gi,k). (1)

To assess the alignment between the frozen ground-level
embeddings and the fine-tuned CLIP embeddings for satellite
images, we employed the InfoNCE loss. This loss function,
derived from Noise Contrastive Estimation (NCE) principles,
facilitated the evaluation of both the similarity and dissimilar-
ity between these two sets of embeddings.

The InfoNCE loss can be expressed as:

LInfoNCE = − 1

N

N∑
i=1

log

(
exp(sim(Gi, si)/τ)∑N

j=1 exp(sim(Gi, sj)/τ))

)
(2)

Here N is the number of data samples, where Gi and si
represent the frozen ground-level embeddings and the learn-
able satellite image embeddings, respectively, pertaining to
the ith geographic location. In addition, sim(G, s) denotes
the cosine similarity function between these two embeddings,
and τ denotes a temperature parameter that scales the similar-
ity scores.

The objective of this loss function is twofold: it aims
to increase the cross-modal similarity between embeddings
from the same geographic location while diminishing the
similarity between embeddings from different locations. The
ultimate goal is to ensure alignment between the fine-tuned
CLIP embeddings and the distinctive characteristics inherent
in the ground-level embeddings. This alignment enhances the

model’s capacity to discern and extract features specific to
satellite imagery, thereby enhancing the accuracy of land use
classification.

In addition to the InfoNCE loss, we also explored us-
ing a cosine similarity loss, that utilises only positive pair
of ground-level and satellite image embeddings. The cosine
similarity loss function between individual ground-level im-
ages and their corresponding positive pairs can be represented
as:

Lcossim =

N∑
i=1

Gi · si
∥Gi∥∥si∥

(3)

3. EXPERIMENTS AND RESULTS

3.1. Pre-Training

This study involved the fine-tuning of a ResNet50 architecture
used in the CLIP framework for BingCLIP and SenCLIP. To
optimise the model’s parameters, we employed the AdamW
optimiser, as proposed by Loshchilov and Hutter [10], setting
the initial learning rate (LR) to 5 · 10−6. The training pro-
cedure employed a batch size of 32 and extended across 100
epochs, incorporating a cosine annealing warm-start sched-
uler to enhance the training process. τ is set to 0.007 to scale
the similarity scores. To transform the images, a series of
techniques including resizing, centre cropping, flipping, and
rotation were applied. These transformations were imple-
mented to ensure diverse and comprehensive augmentation of
the image data for improved model training.

In addition to fine-tuning the CLIP model, we conducted
separate experiments where we trained models from scratch
using Bing and Sentinel-2 data. This approach allowed for
a fair and comparative analysis to discern the benefits de-
rived from fine-tuning the CLIP model. By training models
from scratch, we aimed to understand the differences in per-
formance, feature learning capabilities, and overall effective-
ness between fine-tuned CLIP and models developed from the
ground up.The hyperparameter settings remain same in both
fine-tune and scratch settings. All models were trained on
single NVIDIA Titan X GPU.

3.2. Evaluation

For the evaluation process, we opted to utilise the EuroSAT
benchmark dataset [11] due to its incorporation of Sentinel-2
images and Land Use/Cover classes, aligning well with our
primary objectives. The evaluation is done on 5000 instances
of EuroSAT that comprises two approaches: first, splitting
the data into 80:10:10 for train, validation, and test datasets,
and second, utilising few-shot learning, wherein 1, 2, 5, 10,
15, and 20 instances per class were provided to assess the
model’s performance with limited instances. We present re-
sults through two distinct methodologies: Linear probing,
which involves assessing the models’ frozen weights and



utilising a single linear layer as the classification layer, and
fine-tuning the whole last residual block and last linear layer
of ResNet50. The utilisation of linear probing offers a more
robust evaluation methodology, allowing for a comprehensive
understanding of the efficacy of the learned representations.
This approach aids in gauging the efficiency of the learned
features and their applicability to the classification task.

Models Linear Probing Fine-Tune
Supervised Scratch ResNet50 96.42 * NA
CLIP 87.60 95.73
RemoteCLIP 92.53 96.67
Bing Scratch 94.53 95.33
BingCLIP-InfoNCE 97.33 98.27
BingCLIP-CosSim 97.60 98.53
Sentinel Scratch 95.47 96.40
SenCLIP-InfoNCE 98.13 97.73
SenCLIP-CosSim 97.47 97.60

Table 1. Top-1 accuracy on EuroSAT dataset. (* represent
scratch training on EuroSAT instead of Linear Probing result).

For the fair evaluation comparing the advantages of trans-
ferring the ground-level CLIP representation to satellite data,
we trained a ResNet50 from scratch on EuroSAT. As illus-
trated in Table 1, both Bing-based and Sentinel-based models
showcased superior performance in the classification tasks
via linear probing and fine-tuning, outperforming the super-
vised, original CLIP, and Remote CLIP methods. However,
the precise impact of the loss function remains a point to in-
vestigate. In the case of the Sentinel-based InfoNCE model,
it surpassed others in linear probing, yet experienced a slight
decline of 0.04% when fine-tuning the last block. Conversely,
fine-tuning BingCLIP with cosine similarity loss demon-
strated superior performance across all models. Both Sen-
CLIP and BingCLIP consistently delivered improved overall
performance in comparison to text or label-based training.
In fact, models trained from scratch using Bing and Sentinel
data exhibited better performance in comparison to CLIP
and RemoteCLIP. Nonetheless, the performance of these
models remains slightly lower in contrast to the supervised
method. This comparison underscores the potential and effi-
cacy of transferring ground-level representations to satellite
in enhancing feature learning for image classification tasks,
offering competitive performance conversely to traditional
supervised approaches.

In the evaluation conducted to assess our models’ capa-
bilities using few-shot learning, Table 2 presents the linear
probing performance across varying shot values, namely 1,
2, 5, 10, 15, and 20. Notably, the results underscore the re-
markable performance of the SenCLIP models in handling
few-shot learning scenarios. Across the spectrum of shots,
SenCLIP models consistently showcased exceptional accu-
racy, demonstrating their adeptness in learning from limited
instances.

Models/K-Shot 1 2 5 10 15 20
CLIP 44.50 54.00 66.50 71.50 68.00 75.00
RemoteCLIP 51.00 65.50 72.00 74.00 79.00 81.50
Bing Scratch 59.00 61.00 79.00 81.00 80.50 85.00
BingCLIP-InfoNCE 56.00 68.50 84.00 87.50 87.00 89.50
BingCLIP-CosSim 64.50 69.00 83.00 86.00 89.00 90.50
Sentinel Scratch 63.50 71.00 83.00 88.50 87.00 90.50
SenCLIP-InfoNCE 60.50 72.00 82.50 88.50 91.50 91.50
SenCLIP-CosSim 66.00 71.00 84.50 91.00 90.50 93.50

Table 2. K-Shot Linear Probing Top-1 Accuracy on EuroSAT

One prominent observation from the evaluation is the sig-
nificant performance disparity between BingCLIP/SenCLIP
models and CLIP or RemoteCLIP. This gap highlights the
superior feature learning capacity of the former models, em-
phasising their proficiency in comprehending labels even with
minimal instances provided per class.

Moreover, the outcomes obtained from the models trained
from scratch also surpass the performance of CLIP and Re-
moteCLIP. This finding further reinforces the notion that
ground-level images serve as good alternative descriptors
compared to textual information, that contributes to the learn-
ing of effective representations.

In the comparison between Bing and Sentinel models,
the superior performance of the Sentinel-based models aligns
with expectations, considering that the EuroSAT dataset pri-
marily comprises Sentinel images. This outcome highlights
the advantages of using images from a similar source during
model training, leading to improved recognition and classifi-
cation of data within that specific dataset.

4. CONCLUSION

In this research, we investigated the potential of using geo-
tagged ground-level imagery to improve satellite image fea-
ture learning. By fine-tuning CLIP-based models on Sentinel-
2 and Bing imagery, using ground-level photos from the LU-
CAS European land use project, our study aimed to bridge the
gap between detailed ground-level context and broader, less-
detailed satellite data. Our results demonstrated that mod-
els trained with ground-level imagery as descriptors outper-
formed other pre-training strategies, such as CLIP, in image
classification. The comparison revealed significant advan-
tages, particularly with limited labeled and Sentinel-2 data.
Furthermore, our few-shot learning evaluation highlighted the
adaptability and accuracy of our approach, even with minimal
instances per class. These findings suggest the promising use
of ground-level imagery to enhance satellite image analysis.
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