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A B S T R A C T

Context: To improve agricultural productivity and water sustainability in water-scarce regions, it is essential to 
understand the efficiency and diversity of farming practices
Objective: This study aims to assess the diversity and efficiency of farming systems in Morocco’s Chtouka-Massa 
plain. It focuses on resource management, agricultural intensification, and water use, identifying inefficiencies 
and proposing sustainable solutions.
Methods: Using Principal Component Analysis and Hierarchical Clustering, we classify 40 farm households into 
three distinct typologies: (i) extensive cereal-arboriculture systems, (ii) semi-intensive mixed cereal-vegetable 
systems, and (iii) intensive vegetable farming systems. A meta-frontier approach combined with Data Envel
opment Analysis (DEA) is then applied to assess disparities in resource efficiency, technological performance, and 
environmental sustainability among these typologies.
Results and conclusions: Our results show that extensive cereal-arboriculture systems exhibit the highest resource 
efficiency—particularly in water, nitrogen, and labor—but achieve the lowest gross margins due to limited 
agricultural intensification. Semi-intensive mixed systems demonstrate moderate efficiency but consume the 
largest amounts of water, largely sourced from subsidized private wells. Intensive vegetable farming systems, 
while generating the highest gross margins, are the least efficient due to high input costs, reliance on desalinated 
water, and labor-intensive practices. Targeted policy interventions are needed to optimize resource use and 
promote sustainable practices adapted to each farming typology.
Significance: This study provides actionable insights for policymakers aiming to enhance the sustainability of 
agricultural systems and groundwater resources in arid and semi-arid regions. The findings support the need for 
targeted policies to enhance groundwater management.

1. Introduction

Groundwater resources are essential for agricultural irrigation in 
arid and semi-arid regions (Vecchio and Kuper, 2022). However, the 
increasing reliance on groundwater for agriculture has significantly 
contributed to aquifer depletion, jeopardizing the sustainability of 
agricultural systems and the groundwater resources (Scanlon et al., 
2012). Morocco is a typical example of this phenomenon. Indeed, 
Moroccan agricultural intensification policies and the expansion of 
irrigated perimeters have exacerbated this issue (Molle and Tanouti, 

2017; Vecchio and Kuper, 2022). Actually, a significant shift occurred in 
the 1980s when persistent droughts pushed agriculture, previously 
dominated by rain-fed systems, toward irrigated farming (Stour and 
Agoumi, 2008). This transition was facilitated by farmers gaining access 
to groundwater resources through private boreholes, as traditional wells 
were increasingly converted into deeper boreholes (Vecchio and Kuper, 
2022). Consequently, more and more aquifers are showing alarming 
signs of overexploitation. Since the 1990s, groundwater pumping has 
intensified, causing water table drawdowns of 5–65 m between 1990 
and 2019 across various Moroccan regions (Bahir et al., 2021; 
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Hssaisoune et al., 2020; Ouassanouan et al., 2022). This persistent 
imbalance between groundwater extraction and recharge has further led 
to cumulative declines of 20–65 m over the last three decades 
(Hssaisoune et al., 2020). In addition, significant groundwater deficits 
were already reported in 2007, amounting to − 58 Mm³ in the Chtouka 
aquifer and − 283 Mm³ in the Souss aquifer ( Bouchaou et al., 2017). 
Recognizing the importance of the agricultural sector, Morocco has 
implemented several targeted strategies. One of the most notable ini
tiatives is the Green Morocco Plan (GMP), an agricultural strategy 
launched in 2008 and implemented until 2020. Developed by the Min
istry of Agriculture and Maritime Fisheries under the supervision of the 
Moroccan government, the GMP aimed to boost agricultural produc
tivity and attract investment (ADA, 2025). The GMP encouraged and 
facilitated access to water and land by providing financial support for 
irrigation systems, such as drip irrigation, and crop cultivation (Kuper 
et al., 2012). In practice, this policy promoted the intensification and 
conversion of cereal lands into arboriculture and market gardening 
(Saidi et al., 2023), more profitable and export-oriented crops, but also 
significantly more water-intensive. This plan reports a negative aquifer 
balance for 15–20 out of Morocco’s 40–50 major aquifers (Molle and 
Tanouti., 2017).

These challenges underline the urgent need to analyze existing 
agricultural systems and assess their overall efficiency, encompassing 
technological, economic, and environmental dimension, in order to 
propose adaptation strategies for water scarcity and climate change 
(Scanlon et al., 2012). Ensuring the long-term sustainability of agricul
tural practices and food security requires solutions that are not only 
effective but also adapted to the specific characteristics and constraints 
of each farming system (El Ansari et al., 2020; Reidsma et al., 2018).

To design context-specific adaptation strategies, it is essential to first 
understand the diversity of farming systems and their varying levels of 
resource efficiency. In Morocco, the combined effects of agricultural 
policies promoting intensification (Molle and Tanouti., 2017) and 
recurrent droughts linked to climate change have created a highly het
erogeneous farming landscape. Some farms have successfully adopted 
profitable but water-intensive systems, while others struggle to maintain 
productivity under resource scarcity (Stour and Agoumi., 2008). In this 
context, identifying farm typologies is a necessary step to capture this 
diversity and to understand how different categories of farms respond to 
policy incentives and climatic pressures. Linking these typologies with 
an efficiency analysis allows us to determine not only which farm types 
make better use of scarce water resources, but also to highlight the 
constraints that limit others (Reidsma et al., 2018). This integrated 
perspective is essential for designing adaptation strategies that reconcile 
agricultural development with groundwater sustainability.

Farm typologies are widely used in agriculture and rural develop
ment to identify and understand the diversity of farming systems and 
farmer profiles within a given region (Kumar et al., 2019). They serve as 
an effective tool to capture the heterogeneity of agricultural practices, 
considering the complex interplay of ecological, economic, and social 
factors that shape different farming systems (Poussin et al., 2008). Ac
cording to the literature, farm typologies are generally based on three 
main characteristics: socio-environmental characteristics, farm struc
tural characteristics, and farmers’ individual characteristics (Huber 
et al., 2024). This multi-dimensional approach helps to categorize 
agricultural systems into distinct groups, facilitating a deeper under
standing of their dynamics and enabling targeted interventions and 
policy formulations tailored to specific agricultural contexts.

There are two main approaches to developing farm typologies. The 
first relies on stakeholder inputs validated through surveys, which 
directly reflect local knowledge and expertise. For instance, stakeholder- 
based typologies have been employed in smallholder farming systems in 
Ethiopia to identify water use patterns and their impact on food security 
(Eshetae et al., 2024). The second approach uses statistical analyses of 
agricultural survey data, providing an empirical and data-driven clas
sification of farms. For example, Maton et al. (2005) employed 

multivariate analysis techniques to develop typologies in irrigated 
agricultural systems in West Africa, identifying key drivers of variability 
such as farm size and access to markets. Both methods have their ad
vantages, with stakeholder-based typologies offering practical insights 
and data-driven approaches providing robust classifications. In this 
study, we adopted the statistical-based approach: farm-level data were 
collected through field surveys with farmers and subsequently analyzed 
using Principal Component Analysis (PCA) and Ascendant Hierarchical 
Classification (AHC) to construct the typology. By enabling a deeper 
understanding of farm diversity, typologies contribute to more effective 
resource allocation, support mechanisms, and policy interventions, 
fostering sustainable agricultural development and addressing global 
food security challenges (Hammond et al., 2020).

Chtouka-Massa plain, situated in the southwestern part of Morocco, 
is a typical example of aquifer depletion, where surface water resources 
are almost nonexistent, making groundwater the primary source of 
water (Mouna et al., 2016). Given its high dependence on groundwater 
and its representativeness of the challenges faced in semi-arid Morocco, 
this study is based on data collected from 40 farm interviews in this 
region. In this context, the study integrates farm typologies with effi
ciency analysis to provide actionable insights for improving farm water 
management.

To ensure sustainability, agriculture must improve efficiency, either 
by maintaining production with fewer inputs or increasing output with 
existing resources, thereby ensuring future generations’ access to energy 
and natural resources (Kyrgiakos et al., 2023). The two main approaches 
for estimating efficiency and inefficiency levels are the Stochastic 
Frontier Production Function (SFA), a parametric method, and Data 
Envelopment Analysis (DEA), a non-parametric method which was 
proposed by Charnes et al. (1978). DEA is a widely recognized 
non-parametric method that utilizes linear programming principles to 
assess the technical efficiency of various productive units (Charnes et al., 
1978). DEA evaluates the relative performance of a group of producers 
or decision-making units (DMU), particularly in situations where mul
tiple inputs and outputs complicate direct comparisons (Chen et al., 
2009). The optimization method can be input-oriented, focusing on 
minimizing inputs used, or output-oriented, aiming to maximize the 
outputs produced (Moutinho et al., 2018; Bournaris et al., 2019), and 
both approaches can be used for the same dataset (Kyrgiakos et al., 
2023). Classical DEA models include two types of scale: model with 
constant returns to scale (CRS) (Charnes et al., 1978) and model with 
variable returns to scale (VRS) (Banker et al., 1984).

DEA has been widely applied across various fields, including eco
nomics, ecology, and industry. In this context, Zheng et al. (2019) uti
lized a DEA evaluation approach to assess the agricultural production 
efficiency of seven provinces of the Yangtze River basin from 1996 to 
2015.

However, previous studies have highlighted flaws in DEA, such as 
ignoring regional heterogeneity and integer constraints in key in
dicators, which can lead to biased evaluations and limited support for 
effective decision-making (Han et al., 2020; Yu et al., 2022; Chen et al., 
2021). Traditional DEA models generally assume that all DMU are 
drawn from a homogeneous group and utilize the same underlying 
production technology (Yu and Chen, 2020). The Meta-frontier DEA 
model was introduced by O’Donnell et al. (2008) to account for tech
nology heterogeneity. It has been applied in energy and environmental 
efficiency research. By constructing meta-group frontiers, the analysis 
captures technological heterogeneity arising from resource variability, 
production variations, and geographic differences, allowing for the 
identification of inefficiency sources (Ding et al., 2020). Agriculture is a 
typical example where DMU are highly heterogeneous. Farms use 
different combinations of inputs and outputs. These differences can be 
explained by differences in their organization, their farming practices, 
their differentiated access to natural resources (water, soil, etc.), finance 
resources, infrastructure, social and economic environment, etc. It is the 
case in the studied area where a diversity of farming systems coexist 
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making comparisons between groups extremely hazardous. Lastly, it 
should be noted that DEA has been selected over SFA, due to the fact that 
it is a peer review technique that highlights the best performers that can 
act as lighthouses in local communities. Considering that farmers are 
highly influenced from neighbor’s actions, DEA displays a higher po
tential for the implementation of the acquired results from farmers 
(Lampe and Hilgers, 2015).

This paper aims to identify and analyze the agricultural practices of 
farms to determine those who are efficient in terms of water manage
ment and those who are less efficient. To do so, this study developed a 
detailed typology of farms on the Chtouka-Massa plain in Morocco to 
assess the farming systems diversity. Then we conducted a DEA model 
based on the meta-frontier analysis framework to assess their efficiency 
in terms of input use and water management. This study employs the 
Technology Gap Ratio (TGR) index to assess both group-level and 
technological heterogeneity among the identified farm types. Addi
tionally, it decomposes farm inefficiencies to identify the internal factors 
contributing to low performance, offering targeted strategies for 
improvement. The methodology is illustrated in the flowchart of Fig. 1.

After the introduction, Section 2 outlines the methodology used in 
this study, including the data collection process, the development of the 
farm typology, and the meta-frontier DEA model. Section 3 presents the 
results, detailing the identified farm types, their respective efficiency 
scores, and the analysis of technological heterogeneity using the Tech
nology Gap Ratio (TGR). Section 4 discusses the findings, emphasizing 
their implications for water management and resource optimization, 
and explores potential strategies for improving efficiency. Finally, Sec
tion 5 concludes the paper by summarizing the key insights and 
providing recommendations for future research and policy 
development.

2. Methodology

2.1. Description of the study area

The Chtouka-Massa plain is located in the southern part of the Souss- 
Massa region in southwestern Morocco and covers approximately 
1260 km² (Mouna et al., 2016) (Fig. 2).

The area experiences a semi-arid climate with abundant sunshine, 
influenced by its proximity to the Atlantic Ocean and the latitude of the 
Sahara Desert. This unique positioning results in hot, dry summers and 
relatively cold winters, contributing to highly variables precipitations 
levels. Annual rainfall ranges from as little as 200 mm in the plains to 
600 mm in the mountainous areas (Ait Brahim et al., 2017), which 
significantly impacts agricultural activities and water availability.

The Massa River, situated 70 km south of Agadir, is the main surface 
water source in the Chtouka-Massa plain. Since the construction of the 
Youssef Ben Tachfine (YBT) dam in 1973, the river’s flow has been 
regulated, playing a crucial role in the area’s water management. The 
recharge of the Chtouka-Massa plain primarily comes from pre
cipitations, groundwater from the formations of the Anti-Atlas 

Mountains (Krimissa, 2005), irrigation supplies, and regulated water 
releases from the YBT dam (Ait Brahim et al., 2017). Another irrigation 
water source implemented by the GMP to reduce pressure on the aquifer, 
is the desalination plant located in the Chtouka region. This facility 
supplies 13,600 ha with a capacity of 167,000 m³ per day (Hirich et al., 
2017). According to the Souss-Massa Hydraulic Basin Agency (ABHSM, 
2015), the dominant irrigation methods are localized techniques such as 
drip irrigation (54 % of the irrigated area) and flood irrigation (26 %) 
(ABHSM, 2015). In the Chtouka-Massa perimeter, more than 3200 water 
points have been drilled, 70 % of which are boreholes and 30 % are 
irrigation wells (ABHSM, 2015). In the same zone, 94 % of extraction is 
used for agriculture, while only 6 % is used for drinking and industrial 
water supply (Bouchaou et al., 2011). This strong reliance on ground
water has contributed to overexploitation of the aquifer, raising con
cerns about the long-term sustainability of agricultural activities. 
Nevertheless, agriculture remains a dominant economic sector, ac
counting for more than 42 % of activities in the region, making it a key 
agricultural pole at both the regional and national levels 
(Haut-Commissariat au Plan (HCP), 2022).

The agricultural landscape of the Chtouka-Massa plain is highly 
productive, with approximately 2724 farms (ABHSM, 2015) covering 
24,800 ha. This area contributes significantly to Morocco’s agricultural 
exports, producing 50 % of the national exports in citrus and early fruits 
(Moha et al., 2016). The study area is characterized by a predominance 
of vegetable production, both in greenhouses and open fields, amount
ing to approximately 1600,295 tons in 2016 including 1.1 million tons 
of tomatoes, according to the Regional Office for Agricultural Devel
opment of Souss-Massa (ORMVASM, 2014).

2.2. Assessing diversity of farm household

2.2.1. Farm household data collection
The 30 farm households identified were surveyed in May and June 

2023 with the collaboration of PhD students from the Ibn Zohr Uni
versity. The selection process was initially guided by agricultural census 
data from the study area. However, these data were incomplete and 
contained gaps, limiting their direct use for a full classification of 
farming systems. To overcome this limitation, we relied on local agri
cultural experts (from research institutions and farmer organizations), 
who helped refine the identification of different farms based on their 
knowledge of the region. These experts played a crucial role in selecting 
the representative farms. This methodological approach is consistent 
with previous studies on farm typology in Morocco, such as the work of 
El Ansari et al. (2020).

To further validate the data and conduct an exploratory diagnosis of 
the area, 12 additional surveys were conducted in March 2024. These 
additional surveys were critical in corroborating the initial findings and 
providing a more comprehensive understanding of the agricultural 
practices and socio-economic conditions in the studied region. The 
surveys were conducted through face-to-face interviews with stake
holders, each lasting 2–3 h. We conducted a thorough verification of the 

Fig. 1. Analytical Framework of the Study.
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survey data and excluded surveys containing too much missing or 
erroneous values. As a result, we obtained a dataset comprising 40 
surveys, which served as the basis for constructing the typology.

Interviews with the heads of farm households were conducted using 
a structured interview guide divided into five main sections. This guide 
was inspired by the work of Chenoune et al. (2016) in Sierra Leone, 
which provided a robust framework for assessing farm household dy
namics. The first section investigated the socio-economic characteristics 
of the farm household, the farm structure (number of household mem
bers, ages, labor, farmland, sources of income, etc.) The second section 
("farming practices") deals with more detailed characteristics of each 
farm household’s crop production. Questions about cultivated area, 
yield of each crop, soil preparation, planting, fertilizer application and 
irrigation (source, quantity, costs, etc.) were asked. The third part of the 
questionnaire was devoted to detailed questions on livestock production 
(herd structure, livestock expenses, production, etc.). The fourth section 
concerned questions regarding food security and access to financing. 
The fifth and last section of the questionnaire examined farm house
holds’ perceptions of agricultural development through a wide range of 
topics, including major constraints faced in farm management, exposure 
to shocks and crop losses, access to and use of crop insurance, reliance 
on advisory services and professional organizations, land dynamics (past 
and future changes, access, and transmission), labor availability and 
evolving needs, as well as changes in crop choices, farm management 
practices, and the use of plant protection products.

In order to better understand the study area, we conducted a focus 
group discussion with local experts and farmers, supplemented by an 
analysis of regional reports. This approach allowed us to distinguish four 
sub-zones based on water access and agricultural practices. The modern 
public perimeter consists of privately held plots that benefit from 
controlled irrigation supplied by the YBT dam, with farmers paying 
water fees to the ORMVASM based on metered consumption. The 
traditional public perimeter includes private plots that receive water 
from periodic dam releases, conveyed through traditional “séguias” 
(irrigation channels), where farmers pay only a nominal fee to the 
ORMVASM. In the private perimeter, farmers rely exclusively on 
groundwater accessed through private boreholes and can benefit from 
government subsidies to modernize their irrigation systems. Unlike in 
the public irrigated schemes, they do not pay water fees to the State but 
bear the costs of extraction (pumping, energy) and the maintenance of 
privately managed irrigation networks, either individually or collec
tively. Finally, the rainfed zone depends solely on precipitation, with 

farmers cultivating low water-demanding crops due to the absence of 
irrigation infrastructure. The insights gathered from the focus group 
were instrumental in refining our understanding of the agricultural 
landscape and guiding the subsequent data collection and analysis.

2.2.2. Construction of farm household’s typology
To address the diversity of farm systems in the Chtouka-Massa plain 

and develop a comprehensive typology that considers both agricultural 
practices and water resource utilization, we took into account two main 
categories of classification criteria: water management and crop pro
duction (Table 1). This approach allowed us to capture the multiple 
dimensions and heterogeneity of agricultural practices within the re
gion. The first category of criteria ‘Irrigation management’ includes 
variables related to the utilization and management of water resources, 
which are critical in this semi-arid region. Key variables include the 
source of irrigation (e.g., YBT dam, private well, or desalination), the 
quantity of water used per crop type, water costs, and the specific irri
gation techniques employed (e.g., drip, sprinkler, or flood irrigation). In 
this study, the term “flood irrigation” refers to gravity-fed methods, 
mainly basin irrigation for arboriculture and furrow irrigation for ce
reals and vegetable crops. In practice, many farmers combine more than 
one of these methods depending on the crop.

The second category ‘Crop production and labor’ integrates variables 
such as the utilized agricultural area (UAA), soil types, crop yields, labor 
input, and associated costs. These factors are essential for understanding 
the broader agricultural practices of farms. Soil type, for instance, 
directly affects fertility, water retention, and crop growth conditions, 
which are critical determinants of yield potential. Other variables, 
including labor input and its cost, provide insights into the economic 
viability and intensity of farming operations. By analyzing these agro- 
economic characteristics, we can classify farms based on their produc
tivity and overall agricultural performance.

A dataset comprising 40 farm households and 21 variables (Table 1) 
were selected based on their relevance to our research question and after 
a correlation test. These variables were used to characterize farm 
household heterogeneity and establish the typology. Table 1 was 
analyzed using two multivariate statistical methods: Principal Compo
nent Analysis (PCA) and Hierarchical Ascending Classification (HCA) 
(Madry et al., 2010).

The aim of PCA is to identify the principal axes, which summarize the 
maximum amount of information to be found in the variables (Bidogeza 
et al., 2009). In other words, PCA reduces the dimensions of a multivariate 

Fig. 2. Location of the Chtouka-Massa plain” study area.
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data table to a few principal components, which can be visualized 
graphically, losing as less information as possible. From the eigenvalues, 
we obtain the inertia indicators, which present the sum of the variances 
carried by each axis. With these variables we will analyze farm household 
heterogeneity. PCA creates new variables as combinations of the original 
ones, using weights from the eigenvectors of the correlation matrix 
(Upadhaya and Dwivedi, 2019). Then the HCA was applied to group the 
farms into distinct clusters based on their shared characteristics. HCA is a 
method used to organize a complex dataset into homogeneous groups 
(clusters), ensuring that subjects within each group share similar charac
teristics (Kniggendorf et al., 2010). The process builds a dendrogram, a 
hierarchical tree structure, by progressively merging clusters based on 
similarity measures and grouping criteria (Leal et al., 2016). This classi
fication tree effectively distinguishes the most homogeneous farm house
hold groups while highlighting significant differences between them. To 
identify the optimal number of farm types (clusters), we identified the 
point where the largest increase in between-cluster inertia occurred. This 
method ensures that clusters are internally cohesive and externally 
distinct, minimizing within-cluster variance while maintaining balanced 
groupings (Kobrich et al., 2003). R software (version 2024.04.00) was 
used to conduct the PCA and the HCA.

2.3. Technical efficiency analysis

The methodology we followed consists of two main stages. In the first 
stage, we applied an output-oriented DEA model that constructs a single 
efficiency frontier using all observations, without distinguishing be
tween types. This model identifies the most efficient farms, which define 
the frontier, while the remaining farms are assessed based on their 
distance from this benchmark. It assumes that all farms have access to 
the same technology.

In the second stage, we implemented the meta-frontier approach, 
which involves two key steps: (i) estimating a group-specific efficiency 
frontier for each type of farm (group frontier) and (ii) constructing the 
meta-frontier, which represents the most advanced technology available 
across all types and encompasses all existing technological frontiers. 
This allows for a comparison not only within each type but also across 
types, providing insight into technological gaps and relative efficiency 
differences among farm types.

2.3.1. Output-oriented DEA Model
In this study, DEA was preferred over the parametric Stochastic 

Frontier Analysis (SFA) because of the high heterogeneity of farms (Ding 
et al., 2020) in the Chtouka-Massa plain. Unlike SFA, DEA does not 
require the specification of a production function (Aigner et al., 1977), 
which is particularly advantageous in contexts where farms use diverse 
combinations of inputs and outputs. DEA is also more suitable for 
handling multi-input and multi-output production systems (Greene, 
2008), which characterizes irrigated agriculture in Morocco. Further
more, the adoption of the meta-frontier DEA framework allows us to 
explicitly account for technological heterogeneity between farm types, 
making it a robust and context-appropriate method for analyzing effi
ciency under conditions of climatic and policy-driven pressures. It 
should be noted, however, that unlike SFA, DEA does not separate in
efficiency from “noise,” where noise refers to random factors such as 
climatic variability, measurement errors, or other uncontrollable shocks 
(Lampe and Hilgers, 2015; Coelli et al., 2005) that may influence farm 
performance.

In the DEA framework, each farm household is treated as a DMU. To 
ensure consistency, we use the term DMU when referring to the opti
mization model, while the term farm household is used in the descriptive 
analysis.

Table 1 
Variables used for farm household typology.

Criteria Variable description Code Source

Irrigation 
management

1. Size of irrigated plot (ha) SIP Primary data from survey
2. Total quantity of irrigation water 

(m3/ha)
TQW

3. Total water cost per farm (MAD1/ 
ha)

TWC Calculated from the survey as the quantity of water multiplied by the price (depend on the source of 
water and of energy)

4. Quantity of water from private 
well (m3/ha)

Priv_well Calculated from the survey, depending on the source of water

5. Quantity of water from dam (m3/ 
ha)

Dam

6. Quantity of water from 
desalination (m3/ha)

Desali

7. % Of irrigation water by drip 
irrigation

%_gag Calculated from the survey as the percentage of the total irrigation water applied through drip, 
sprinkler, or flood irrigation methods.

8. % Of irrigation water by sprinkler 
irrigation

%Asp

9. % Of irrigation water by flood 
irrigation

%Sur

10. Gross margin per water unit 
(MAD/m3)

GM-W Calculated from the survey as the ratio of the gross margin obtained from crop production to the 
volume of irrigation water applied (MAD/m3).

Crop production and 
labor

11. Farming area (ha) area Primary data from survey
12. Gross-margin per hectare (MAD/ 

ha)
GM Primary data from survey the total gross margin divided by the total volume of water used

13. Surface of cereals (ha) Cereals The surface dedicated to cereal crops, vegetable and arboriculture
14. Surface of Vegetable farming (ha) Vegt
15. Surface of Arboriculture (ha) Arbo
16. Total cost of seeds per ha (MAD) See_co_ha Calculated from the survey as the quantity of each input multiplied by the market price of each input 

as given by each farmer
17. Total permanent labor (person/ 

year/ha)
Perm_lab_ Calculated from the survey

18. Total of seasonal labor (person/ 
year/ha)

Seas_lab_

19. Total of family labor (person/ 
year/ha)

Fam-lab

20. Total quantity of NPK (Kg/ha) NPK Primary data from the survey
21. Total quantity of manure (Kg/ha) Fumier

1 Moroccan dirham (MAD). 1MAD = 0.094 euros
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As previously explained, we employed the DEA method to assess the 
technical efficiency of water resource utilization by different DMU. We 
opted for an output-oriented DEA model, motivated by the need to 
determine to what extent a unit can increase its outputs while keeping its 
inputs constant (O’Donnell et al., 2008). In other words, this approach 
aims to maximize production without altering the quantity of resources 
used, thereby evaluating the relative efficiency of the units in an optimal 
productivity context (Yu and Chen, 2020; O’Donnell et al., 2008).

The selection of inputs and outputs reflects the key resources and 
production activities characterizing farm households in the Chtouka- 
Massa plain (Table 2). These variables were used in both the DEA 
model and the meta-frontier analysis to assess efficiency at both the 
group and overall levels. Our study applies the VRS model introduced by 
Banker et al., 1984, as farms in the sample differ considerably in size and 
resources. Unlike the CRS model, which assumes proportionality be
tween inputs and outputs, the VRS model accounts for increasing or 
decreasing returns to scale, making it more suitable for capturing effi
ciency in this heterogeneous context. This approach is particularly 
useful when DMU differ in size, as it avoids comparing small units 
directly with much larger ones (Chen, 2005).

To evaluate the output-oriented technical efficiency of the DMU, we 
employed a linear programming model proposed by Färe et al. (1994). 
This model aims to maximize the potential output of each DMU while 
keeping inputs constant. The mathematical formulation is as follows: 

Maxθ 

Subject to :

θyjm ≤ Σzj⋅yjm, ∀ m (1) 

Σzj⋅xjn ≤ xjn, ∀ n (2) 

In order to calculate changes in scale efficiency, we also calculate 
distance functions under variable returns to scale by adding the VRS 
restriction: 

Σzj = 1 ( VRS condition) (3) 

zj ≥ 0, ∀ (4) 

where:
θ = output technical efficiency measure,
yjm= quantity of output m produced by DMU j,
xjn = quantity of input n produced by DMU j, and
zj = intensity variable for DMU j.

2.3.2. Meta-frontier analysis

2.3.2.1. Group-Frontier and Meta-Frontier. To assess technical efficiency 
while accounting for technological heterogeneity, we applied a group- 
frontier DEA approach combined with a meta-frontier analysis. The 
classification of DMU into homogeneous types was already established 
in the typology analysis. Based on this predefined classification, we 
directly assigned each farm to its respective type in the DEA model.

For each type, we applied an output-oriented DEA model to estimate 
group-specific frontiers, assuming that all units within a given category 
share similar technological conditions. In this phase each DMU was 
compared within its own type. In the second stage, we constructed a 
meta-frontier, encompassing all types, allowing for inter-type efficiency 
comparisons. In this phase each DMU was compared to the best tech
nology available. This approach follows the principles of the group- 
frontier DEA which we implemented using a linear programming- 
based DEA method. Instead of relying on a theoretical approach based 
on technological sets, we formulated the problem as a linear optimiza
tion model. The DEA model was written in GAMS (General Algebraic 
Modeling System), version 43.4.1, based on the framework developed 
by Walden and Kirkley (2000). The mathematical formulation remains 
the same as in the output-oriented DEA model, with the only difference 
being: 

• In the group-frontier DEA, a DMU is compared only to other DMU 
within its own type.

• In the meta-frontier DEA, a DMU is compared to all DMU across all 
types.

2.3.2.2. Technological gap ratio. In order to assess the sources of effi
ciency and inefficiency at the type level, we calculated the TGR. The 
TGR measures the gap between the group-frontier and the meta-frontier, 
indicating the technological disparity between them, such that a higher 
TGR value signifies that the DMU is closer to the meta-frontier and 
therefore operates at a higher production technology level (O’Donnell 
et al., 2008; Huang and Zhao, 2024). The TGR is constructed as follows, 
based on the approach proposed by O’Donnell et al. (2008): 

TGRk(x,y) =
TE(x, y)
TEk(x,y)

(5) 

With:
TE(x, y): Technical Efficiency of the DMU relative to the meta- 

frontier
TEk(x, y): Technical efficiency of the DMU relative to the group-k 

frontier
x: Input vector
y: Output vector
The value of the TGR is between 0 and 1. A TGR close to 1 indicates 

minimal technological disparity, implying that the group frontier is 
almost aligned with the meta-frontier. Conversely, a TGR close to 

Table 2 
Specification of inputs and outputs used in the DEA Model.

Category Variable Description

Output Gross Margin of cereal 
crops

Represents the gross margin generated 
from cereal production, providing a 
measure of cereal crop profitability 
(MAD/ha).

Output Gross margin of vegetable 
crops

Measures the gross margin obtained 
from vegetable production, reflecting 
productivity and profitability in 
vegetable farming (MAD/ha).

Output Gross margin of 
arboriculture crop

Captures the gross margin from tree 
crops, representing returns from 
perennial agriculture (MAD/ha).

Output Gross margin per water 
unit for cereal

Gross margin efficiency per unit of water 
for cereals, defined as the gross 
economic margin relative to water use 
(MAD/m3).

Output Gross margin per water 
unit for vegetable

Gross margin efficiency per unit of water 
for vegetables (MAD/m3).

Output Gross margin per water 
unit for arboriculture crop

Gross margin efficiency per unit of water 
for arboriculture crop (MAD/m3).

Input Land (terre) Total agricultural area cultivated by 
each household, highlighting land use 
intensity.

Input Drip Irrigation Water 
(GaG)

Volume of water applied through drip 
irrigation systems, indicating water 
efficiency.

Input Flood Irrigation Water 
(Surf)

Amount of water used through flood 
irrigation methods, reflecting traditional 
water management practices.

Input NPK Fertilizer for Cereals 
(NPKcer)

Amount of NPK fertilizer applied to 
cereal crops, influencing crop yield.

Input NPK Fertilizer for 
Vegetables (NPKmar)

NPK fertilizer used in vegetable 
production, contributing to yield quality 
and quantity.

Input NPK Fertilizer for 
Arboriculture Crops 
(NPKarb)

NPK fertilizer applied to Arboriculture 
crops, relevant for orchard management 
and productivity.

Input Total Labor Sum of permanent, seasonal and family 
labor per farm
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0 indicates greater technological heterogeneity, highlighting significant 
differences in environmental efficiency between the two frontiers (Ding 
et al., 2020). The meta-efficiency scores are lower than the group effi
ciency score, because the meta-frontier envelops the group frontiers (Yu 
and Chen, 2020). It should be emphasized that the TGR does not directly 
measure inefficiency, but rather captures technological gaps between 
the group-frontier and the meta-frontier. The inefficiencies are inferred 
indirectly by comparing farms’ efficiency scores relative to their 
group-frontier and the meta-frontier, as well as through the TGR (Chiu 
et al., 2012; Yu and Chen, 2020).

To provide a comprehensive understanding of the technological ef
ficiency of each type, we calculated the average Technological Gap Ratio 
(TGR) for the DMU belonging to each farm type. These averages — 
denoted as MOYii = 1,2or3 — offer insights into the overall perfor
mance of each type relative to the meta-frontier. These values provide an 
overview of the average technological gaps for each farm type. The 
averages MOYi are calculated as follows: 

MOYi =

∑
iTGRki

nki
(6) 

Where: 

- TRGki is the Technological Gap Ratio for DMUk in type i
- nki represents the total number of DMU k in type i.

2.3.3. Technical Inefficiencies Decomposition
To identify the sources of inefficiency for each farm household at the 

meta-frontier level, we relied on the approach proposed by Chiu et al. 
(2012) and Yu and Chen (2020). This approach decomposes the overall 
inefficiency (OI) of each DMU into technical gap inefficiency (TIE) and 
management inefficiency (MIE) as follow: 

TIE = Group Efficiency − Meta Efficiency (7) 

MIE = 1 − Group Efficiency (8) 

OI = 1 − MIE = TIE+MIE (9) 

Ding et al. (2020) underline that inefficiency among DMU within the 
same type mainly arises from management inefficiency, as they share 
the same technological framework. The TIE reflects inefficiency due to 
the technological gap between the meta-frontier and group-specific 
frontiers, while the MIE captures inefficiency within the group frontier 
caused by input excess, undesirable outputs, and shortfalls in desirable 
outputs (Chiu et al., 2012). Thus, overall inefficiency can be reduced 
through better technologies and practices (TIE) and/or improved man
agement, training, and resource allocation (MIE).

3. Results

This section presents the results in three key stages. First, we describe 
the farming and cropping systems in the study area, highlighting the 
diversity of agricultural practices and resource use patterns among farm 
households. Next, we analyze the classification of farms using PCA and 
HCA to identify distinct farm typologies. Finally, we assess the technical 
efficiency using a meta-frontier DEA approach, comparing group- 
specific and global efficiency scores to assess technological disparities 
across different farm types. This analysis enables us to quantify the 
technological gaps and identify opportunities to improve water use 
management within each farm typology.

3.1. Description of the farming and cropping systems in the study area

The analysis of data collected from the surveys revealed that the 
mean farming area is 7.04 ha, ranging from 0.5 ha to 29.5 ha. Cumu
lative frequency analysis reveals that 55 % of farm operate on less than 

5 ha, while 27.5 % manage between 5 and 10 ha, and 17 % exceed 10 ha 
(Fig. 3). The surveyed sample predominantly consists of small-scale 
agricultural farms, characterized by limited land size but also exhibits 
variability in terms of farm size. The large majority of farmers own their 
farmland, and each farm is divided into several plots. The age of the 
respondents ranges from 23 to 68 years, and all of them are male. 
Around 80 % of the respondents are educated, their educational levels 
ranging from primary school to university. Farm household incomes are 
primarily derived from agricultural activities. The vast majority of sur
veyed farmers grow vegetables under greenhouses. Farmers with the 
smallest farmland areas (between 0.5 and 2 ha) are located in the south 
and southwest of the zone. In contrast, those with larger agricultural 
areas are situated in the northern and northeastern parts, which include 
both public and private irrigated perimeters, meaning these farmers rely 
on irrigation. These farmers rely on permanent and seasonal salaried 
workforce, whereas small-scale farmers primarily depend on family 
labor. In the entire sample, various crops have been grouped into three 
main categories: vegetables, arboriculture, and cereals, as detailed in the 
Table 3. This classification simplifies the categorization of farmers 
within the typology.

3.2. Results of data analysis

The PCA was applied to data from 40 farms to identify key variables 
and better understand the diversity of farming systems. PCA was used to 
reduce the number of variables into uncorrelated principal components, 
retaining only those with eigenvalues greater than 1 (Kaur et al., 2021). 
The first two axes of the PCA explain 44.73 % of the total variability 
across 21 variables, with Axis 1 accounting for 31.48 % (Dim 1) and Axis 
2 for 13.25 % (Dim 2) (Fig. 4). The third and fourth components explain 
an additional 11.51 % and 8.54 % of the total variability, respectively.

Axis 1 had 12 significant loadings (values higher than 0.5), indi
cating that this principal component captures a substantial portion of 
the total variance in the data (Table 4, Appendix A). Variables 
contributing positively to Axis 1 include the size of the irrigated plot, 
total quantity of irrigation water used, total water costs, quantity of 
water applied through drip irrigation systems, cultivated area of vege
table farming, seed costs, number of seasonal workers, total quantity of 
NPK, overall farming area, the gross margin and the gross margin per 
unit of water. Notably, one variable, the number of family workers, 
contributed negatively to this component.

Axis 2 presented 4 significant loadings, primarily associated with the 
volume of water drawn from the dam, the amount of water used through 
sprinkler systems, the cultivated area of cereal farming, and the total 
number of workers on the farm.

Fig. 3. Frequency distribution of farms by size of land holding.
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The PCA biplot (Fig. 4) visualizes the positioning of the individuals 
(farms) based on their characteristics along the first two principal 
components, Dim1 (31.48 %) and Dim2 (13.25 %). This plot provides 
insights into the variability and relationships between different farms.

Based on the distribution of the farmers, we observe that farms are 
dispersed across the four quadrants, indicating variability in their 
characteristics. This dispersion suggests that the farms differ signifi
cantly in their practices. The clustering of several farms around the 
origin (0,0) suggests that these farms have average characteristics 
relative to the dataset, meaning they do not strongly differ in the di
mensions defined by Dim1 and Dim2. Farm household 7 is positioned far 
to the right along Dim1, suggesting that it has distinct characteristics 
compared to the other farm households. This farmer has the largest 
agricultural area, covering 29.5 ha, and bears the highest water costs 
compared to the rest of the sample. He cultivates raspberries, black
berries, and blueberries, irrigated by a drip system sourced from his 
private well. The use of electricity as the primary energy source further 
contributes to the high-water costs.

The classification of farm households is based on the factor co
ordinates obtained from the PCA. The two principal components were 
used as input data for the HCA. The approach of agglomerative hierar
chical clustering involves calculating the distances between farm 
households and clustering those with minimal distances to form a 
dendrogram (Appendix A, Fig. 5). The dendrogram resulting from the 
HCA illustrates the hierarchical structure of the farms (labeled H1, H2, 
etc.) based on their similarity. The closer two individuals in the 
dendrogram, the more similar they are. The branches of the dendrogram 
represent the successive groupings of farms. At each level of fusion, 
farms or groups of farms are combined into a larger group. For example, 
farms H7 and H17 are very similar as they merge at a low level. To 
determine the number of clusters (groups), we choose to cut the 
dendrogram at a height of 10, which results in three main types of farms. 
The cluster plot as shown in the Fig. 6 illustrates the grouping of data 
points into three clusters (Cluster 1, Cluster 2, and Cluster 3) based on 

their coordinates on the two principal components (Dim 1 and Dim 2). 
Cluster 1 (red) is located on the far left, Cluster 2 (green) is central but 
elongated, and Cluster 3 (blue) is on the right.

The identified farm household types were designed as follows: (1) 
extensive cereal-arboriculture farming household, (2) semi-intensive 
mixed cereal-vegetables farming household, and (3) intensive vege
table farming household. A detailed description of each farm household 
type is provided below: 

- Extensive cereal-arboriculture farming household 
Type 1 farm households primarily focus on cereal cultivation, 

complemented by arboriculture. This category includes 11 units, 
which have the smallest average irrigated plot size of about 1.31 ha. 
These farm households use the least amount of water for irrigation 
because their cereal cultivation is rainfed. The total water used 

Table 3 
Classification of crop types in the sample.

Categories Crops

Vegetables Tomato, bell pepper, green bean, pea, zucchini, turnip, blueberry, 
raspberry, blackberry, potato, melon, carrot, fava bean, cucumber

Arboriculture Lemon, carob tree, olive trees
Cereals Corn, alfalfa, durum wheat, soft wheat, barley

Fig. 4. Representation of variables, correlation circle and projection of farm households on factorial plane 1–2 of PCA.

Fig. 6. Cluster plot of PCA Results with hierarchical clustering.
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amounts to 5945 m³ per year per hectare, to which an estimated 
3000 m³ of rainfall per year per hectare is added They neither use 
water from the dam nor from the desalination plant, relying instead 
on their private wells for irrigating arboriculture. The irrigation 
technique employed is flood irrigation. 

Cereal cultivation in these farm households heavily depends on 
family labor, unlike the other two types where family labor contri
bution is minimal. In Type 1 farms, family labor amounts to 2 per
sons per year per hectare. These farm households have the lowest 
gross margin per unit of water, calculated at 4.97 MAD/m³ , as well 
as the lowest overall gross margin. They also use the smallest amount 
of NPK fertilizer, approximately 36 kg per hectare. Their dependence 
on family labor and reliance on rainfall for irrigation contribute to 
keeping the overall farming costs at a minimum.

- Semi-intensive mixed cereal-vegetables farming household 
Semi-intensive mixed cereal-vegetable farming households (Type 

2) are characterized by a combination of cereals and vegetables 
cultivation, with no engagement in arboriculture. On average, they 
cultivate larger irrigated plots (5.91 ha). This type represents the 
largest cluster, comprising 21 farm households. 

The average water usage for irrigation is approximately 
11,800 m³ per year per hectare. These farm households primarily 
rely on water from private wells and dams. The irrigation technique 
used is drip irrigation. They are characterized by their reliance on 
permanent labor and for using the largest amount of manure, aver
aging 272 kg of N per hectare. The average gross margin per unit of 
water is around 72 MAD per m³ .

- Intensive vegetable farming household

Intensive vegetable farming households (Type 3) specialize exclu
sively in vegetable production. This category includes 21 households 
and has the largest average irrigated plot size, measuring 17.18 ha. They 
use a significant amount of water for irrigation, averaging 
10,728 m³ per year per hectare, and face the highest water costs. This is 
primarily due to their reliance on desalinated water, which costs 5 MAD 
per cubic meter—substantially higher than water sourced from dams, 
priced at 0.85 MAD per cubic meter. The primary irrigation method 
employed is drip irrigation, which is efficient but entails high opera
tional costs. These farm households also incur elevated costs due to the 
high price of seeds and the need for both seasonal labor (10 persons per 
year per hectare) and permanent labor. They use the highest quantity of 
NPK fertilizer, averaging 1887 kg per hectare. Despite these higher 
costs, they achieve the highest gross margin and the highest gross 
margin per unit of water, with an average of 152 MAD per m³ .

These three farm typologies — extensive cereal-arboriculture 
farming households, semi-intensive mixed cereal-vegetables farming 
households and intensive vegetable farming households — differ 
significantly in their resource use, production strategies, and input in
tensity. These differences are reflected in their water usage, labor de
pendency, fertilizer application, and gross margins, which underline the 
diversity in production systems and their challenges. Given this di
versity, it becomes essential to assess the technical efficiency of these 
farm types to determine how effectively they utilize their resources 
compared to their potential output levels.

3.3. Data envelopment analysis and meta-frontier

3.3.1. Meta-Frontier and group-Frontier
Having identified the distinct characteristics and resource use pat

terns of each farm household, the next step involves evaluating their 
technical efficiency within their respective types and in comparison, to 
the overall technological potential. The meta-frontier analysis provides 
a robust framework for assessing efficiency across heterogeneous 
groups.

To evaluate and compare the technical efficiencies of the group- 
frontiers to the meta-frontiers, we used an output-oriented DEA 

model. This model is designed to maximize outputs while keeping inputs 
constant, aligning with the objective of improving resource efficiency 
across farm households. By doing so, we can identify farm households 
that utilize resources optimally and those that face significant 
inefficiencies.

Fig. 7 illustrates the variations in the three efficiency indicators 
(meta-frontier, group-frontier, and TGR) for the 40 farm households. 
The results highlight significant disparities: while some achieve high 
efficiency levels, others require substantial interventions to improve 
their resource utilization and reduce the technological gap.

Analyzing efficiency by type, we observe distinct patterns. Type 1 
(extensive cereals-arboriculture farming households) shows efficiency 
scores ranging from 0.199 to 1.000, with several farms operating at full 
efficiency (score = 1.000), suggesting that some units fully exploit their 
available technology while others lag behind. Type 2 (semi-intensive 
mixed cereals-vegetables farming household) shows a greater dispersion 
of scores (0.201–1.000), indicating significant heterogeneity in resource 
utilization among farms within this type. Finally, Type 3 (intensive 
vegetables farming household) demonstrates relatively high efficiency 
overall, with scores ranging from 0.430 to 1.000, suggesting that the 
majority of farms in this type operate closer to the efficiency frontier.

3.3.2. Technological gap ratio (TGR)
The TGR quantifies the technological gap between farm household 

performance and the global potential, where a value close to 1 indicates 
minimal technological disparity. The results of the average TGR calcu
lations (Eqs. (5) and (6), Table 5) and the efficiency analysis (Fig. 8) 
reveal significant heterogeneity among the three farm types. For Type 1 
farms (extensive cereals-arboriculture), all farm households exhibit a 
TGR of 1.000, leading to an average MOY1 of 1.000. This indicates that 
these farm households consistently achieve full efficiency, fully aligning 
with the meta-frontier. Despite their lower efficiency scores compared to 
other groups, they have fully reached their technological potential 
within their category and relative to the meta-frontier. According to 
Battese et al. (2004), this means their efficiency is not constrained by 
technological limitations but rather by structural or environmental 
factors, such as their reliance on rainfed cereal cultivation and minimal 
external inputs. Their farming system is inherently less intensive, which 
explains why they operate at full technological potential despite lower 
overall productivity.

In contrast, Type 2 farm household (semi-intensive mixed cereals- 
vegetables) demonstrate heterogeneous technological efficiency, with 
TGR values ranging from 0.744 to 1.000, leading to an average MOY2 of 
0.944. This suggests that these farms are close to the meta-frontier, with 
only minor technological disparities. Many farm households in this type 
utilize their resources effectively, but some fail to fully exploit available 
technological advancements. For example, farm households 32 and 37 
have TGR values close to 1 (0.995 and 0.997, respectively), while others, 
such as farm 19 (TGR = 0.744) and farm 33 (TGR = 0.781), exhibit 
technological gaps. These disparities suggest opportunities for 
improvement through the adoption of advanced irrigation systems, 
optimized fertilization methods, and better resource management 
strategies

The Type 3 farm household (intensive vegetables) exhibit the highest 
variability in technological efficiency, with TGR values ranging from 
0.221 to 1.000, resulting in an average MOY3 of only 0.761. This pro
nounced inefficiency suggests that while some farm households in this 
type operate at their maximum potential (e.g., farm 10 and farm 2, both 
with TGR = 1.000), others experience significant technological lag 
(farm 34: TGR = 0.221, farm household 38: TGR = 0.293). The low 
MOY3 score reflects that, on average, farm households this type struggle 
to integrate advanced technologies, likely due to high input costs (e.g., 
desalinated water and fertilizers) and the labor-intensive nature of their 
operations. While intensive vegetables production is highly profitable, 
its reliance on expensive inputs and skilled labor creates barriers to ef
ficiency improvements. Farms with lower TGR values may need support 
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in adopting cost-effective irrigation strategies, optimizing fertilization 
techniques, and improving labor efficiency to bridge the gap with the 
meta-frontier. This analysis highlights the importance of designing tar
geted solutions that address the specific challenges and resource con
straints of each farm household type to enhance overall efficiency.

3.4. Technical inefficiency analysis

This part identifies the internal factors that contribute to inefficiencies 
across farm households. The detailed inefficiency scores are presented in 
Table 6 (Appendix A), which reports also meta-frontier and group-frontier 
efficiency levels together with the decomposition of the overall in
efficiency (OI) into technological (TIE) and managerial (MIE) in
efficiencies. Fig. 9 complements these results by providing a visual 

representation of the decomposition, highlighting the relative contribution 
of managerial versus technological inefficiencies across farm households.

The inefficiency analysis shows that managerial inefficiency (MIE) is 
the most common source of inefficiency, affecting 10 farm households in 
total (6 from Type 2 and 4 from Type 1). Technological inefficiency (TIE) 
was observed in 6 farm households (3 from Type 2 and 3 from Type 3). A 
smaller group of 4 farm households (2 from Type 2 and 2 from Type 3) 
exhibited both technological and managerial inefficiencies simulta
neously. In contrast, 16 farm households were found to be fully efficient, 
comprising 7 from Type 1, 7 from Type 2, and 2 from Type 3. These results 
underline that inefficiencies are not uniformly distributed: Type 1 farm 
households are mostly constrained by managerial issues, Type 2 farm 
households display both managerial and technological gaps, while Type 3 
farm households face primarily technological challenges, especially 
related to irrigation and input management. This heterogeneity highlights 
the need for targeted interventions tailored to the constraints of each farm 
type.

It is observed that both managerial and technological challenges can 
coexist within the same type of farm households, leading to the presence of 
multiple types of inefficiencies rather than a singular issue. At the meta- 
frontier level, Type 3 farm households must focus on achieving 

Fig. 7. Meta-Frontier, Group Frontier and TGR of each farm household.

Table 5 
Average Technological Gap Ratio (TGR) by farm type.

Farm Type Average TGR (MOYi)

1. Extensive Cereal-Arboriculture 1.0
2. Semi-Intensive Mixed Cereal-Vegetable 0.944
3. Intensive Vegetables 0.761
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technological advancements to reach the meta-frontier. However, at the 
group-frontier level, where farm households share similar technologies, 
inefficiencies are generally linked to resource management. In this 
context, inefficient farm households should prioritize optimizing their 
resource use and improving managerial practices to enhance their overall 
performance. Type 1 include farm households 13, 22–30, and 40. Among 
them, farm households 23, 24, 28, and 40 are inefficient due to managerial 
issues rather than technological gaps. This suggests that their low effi
ciency scores within the type result from suboptimal resource allocation, 
ineffective management strategies, or lack of operational optimization, 
rather than a lack of access to advanced farming technologies.

Based on the study by Ding et al. (2020), our recommendations will 

follow a structured approach. If a farm household is found to be ineffi
cient under the group-frontier, it should focus on improving its resource 
management practices to align more closely with the benchmarks 
established within its type. Conversely, if a farm household is efficient 
within its type but remains inefficient under the meta-frontier, it should 
work towards further enhancing its resource management to meet the 
broader overall benchmark, thereby improving its performance relative 
to all types.

4. Discussion

This study highlights significant inefficiencies in water use among 

Fig. 8. Meta-Frontier and group-frontier for farm households.

Fig. 9. Decomposition of Inefficiency in farm households
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different farm types in the Chtouka-Massa region, revealing crucial 
trade-offs between economic profitability and resource sustainability. 
Farm households engaged in intensive vegetables farming are strongly 
supported by public authorities in Morocco (El Ansari et al., 2020; 
Saoud, 2011). The GMP has prioritized the large-scale production of 
fruit and vegetables, with high-value crops such as early vegetables and 
citrus fruits primarily targeting export markets, thereby generating 
significant foreign currency revenues (Sraïri, 2021). However, some 
studies contend that the GMP overlooked the negative consequences of 
agricultural intensification and monoculture (Akesbi, 2015; Faysse, 
2015). The specialization of crops, without diversification in crop 
rotation, can progressively increase their vulnerability to water scarcity.

In that sense, our findings showed that intensive vegetables farm 
households (Type 3) achieve the highest gross margins due to the 
profitability of these crops. However, based on our data analysis, they 
also exhibit the highest consumption of NPK fertilizers, permanent 
labor, land, and seeds. These results align with previous studies, which 
have also pointed out that while intensive vegetables farming can be 
economically profitable, it requires substantial input use and labor (El 
Ansari., 2018; Amichi et al., 2012). This type of farming faces sustain
ability challenges, especially in the context of climate change and water 
scarcity. Its heavy reliance on irrigation, specialization, and lack of crop 
diversification undermines the resilience of these agricultural systems in 
Morocco and other arid and semi-arid regions. This type of farm 
household also cultivates the largest agricultural areas, primarily dedi
cated to vegetables farming, often in greenhouses (Dugué et al., 2015). 
Their access to land is facilitated by subsidies and the relaxed regula
tions for land and water access introduced under the GMP, which aims to 
intensify agriculture as part of its broader objectives (Kuper and Molle, 
2017).

Another critical aspect of our findings is that intensive vegetables 
farming heavily relies on desalinated water from the Agadir desalination 
plant, constructed under the GMP framework to reduce aquifer pressure. 
Although Type 3 farm households are highly intensive in terms of inputs 
(fertilizers, labor, seeds, land), their water use per hectare is lower than 
that of semi-intensive farm households of Type 2. This is largely 
explained by the much higher price of desalinated water compared to 
groundwater and by their stronger market orientation, which creates an 
economic incentive to control irrigation volumes and maximize water 
productivity. However, our results raise important concerns about the 
long-term sustainability of this approach. Morocco’s strategy remains 
heavily supply-driven, prioritizing new water sources rather than 
implementing demand-side measures such as improved irrigation effi
ciency, crop rotation, and groundwater governance (Benblidia, 2011; 
Del Vecchio, 2020). Our study supports this critique by demonstrating 
that despite the introduction of desalination, Type 3 farms continue to 
exhibit unsustainable water use patterns. Furthermore, as previously 
highlighted by Lattemann and El-Habr (2009), seawater desalination 
has serious environmental externalities, including marine habitat dis
turbances and high energy consumption, leading to increased CO₂ and 
NOₓ emissions. The environmental trade-offs of desalination must 
therefore be fully integrated into Morocco’s water governance strategies 
to avoid exacerbating climate-related challenges.

The evaluation of the technical efficiency reveals that Type 3 farm 
housholds are the least efficient among the three types of agricultural 
systems, with an average TGR of 0.761. This inefficiency persists despite 
the use of drip irrigation for parcel irrigation, raising significant ques
tions about the relevance of this technology. Our findings contribute to 
the ongoing debate about drip irrigation efficiency in Morocco where 
import taxes on micro-irrigation equipment have been reduced or 
completely eliminated since 1982 (Laamari et al., 2011), even though 
the role of drip irrigation in water conservation remains highly 
controversial. While widely promoted as a water-saving technology, its 
actual efficiency is often called into question. In practice, the efficiency 
of drip irrigation in farmers’ fields frequently falls short of expectations 
due to several factors, including over-irrigation caused by uneven 

pressure and irregular dripper discharge, resulting from poor system 
design or inadequate maintenance. To compensate for these distribution 
problems and avoid crop stress, farmers often apply more water than 
required. In addition, inadequate irrigation scheduling, linked to a lack 
of knowledge or tools to match irrigation with crop water needs, further 
contributes to the reduced efficiency of drip systems (Benouniche et al., 
2014). This technique has revealed significant environmental and social 
drawbacks. On the environmental scale, it has led to issues such as 
increased evapotranspiration, aquifer depletion, and higher crop den
sity, which in turn result in greater water consumption (Molle et 
Tanouti, 2017).

For intensive vegetables farm households, it is crucial to raise 
awareness among farmers about the importance of sustainable water 
and resource management practices, emphasizing the efficiency of in
puts to maintain profitability while protecting the environment (OECD, 
2010). Farmers can improve water efficiency by understanding the 
factors that influence crop water requirements, allowing them to opti
mize irrigation schedules while adequately meeting crop needs 
(Tuninetti et al., 2015). Additionally, it is recommended to introduce 
crops that are less water-intensive and contribute to soil conservation.

Semi-intensive mixed cereals-vegetables farm households (Type 2) 
are the largest consumers of water, primarily sourced through ground
water pumping using private wells. This method of water access has 
been directly incentivized by substantial subsidies for wells and drilling 
provided under the GMP (Molle et Mayaux, 2023). Because groundwater 
is considerably cheaper than desalinated water, these farms face no 
effective economic limit on pumped volumes, which leads to higher 
water use per hectare compared to household farms of Type 3 that rely 
on costly desalinated water and therefore have a financial incentive to 
limit and optimize irrigation. Furthermore, the Moroccan Economic, 
Social, and Environmental Council (CESE) underscores that public au
thorities lack the capacity to implement effective measures to regulate 
groundwater extraction (Conseil Économique, Social et Environ
nemental (CESE), 2014). These private wells can be either authorized or 
unauthorized, and according to Molle and Mayaux (2023), only 10 % of 
wells are officially registered in Morocco. Our study provides new in
sights into this issue by demonstrating that Type 2 farms, despite their 
substantial water use, still face efficiency challenges, suggesting that 
water overuse is not necessarily linked to economic returns. This sup
ports the argument that groundwater depletion in Morocco is driven by 
both policy incentives and weak enforcement mechanisms, reinforcing 
the need for stronger regulatory oversight.

In contrast, extensive cereal-arboriculture farm households (Type 1) 
operate with the lowest input intensities, making them most efficient in 
resource use, particularly in water, nitrogen, and labor and the most 
diversified in the region, but with the lowest net margins compared to 
the two other farm types. These household farms primarily rely on 
rainfed cereals cultivation and flood irrigation (basin) for arboriculture, 
leading to low water use but also low gross margins per unit of water. 
Their limited access to advanced irrigation technologies and strong 
dependence on family labor contribute to their lower efficiency scores in 
some cases. However, agricultural policies in Morocco, particularly the 
GMP, have not prioritized or promoted cereals cultivation, as it is 
considered less profitable and lacking high economic value. On the 
contrary, it has actively encouraged the conversion of cereal farmland to 
arboriculture (Saidi et al., 2023). Consequently, Morocco’s cereals 
production has stagnated, showing little to no growth since the launch of 
the GMP (Bishaw et al., 2019). This has left the country heavily 
dependent on substantial cereal imports to meet its domestic demand 
(Sraïri, 2021). The key challenge for these agricultural systems lies in 
increasing their gross margins or income by improving access to nitro
gen (Tilman et al., 2002), water, and labor. However, such an increase 
would likely come at the expense of their technical efficiency, as is the 
case for Type 2 farm households and Type 1 farm households.

The GMP has led to a major transformation in Moroccan agriculture 
by encouraging farmers, particularly those of Type 1, to shift from 
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traditional cereal cultivation to higher-value crops. This program aimed 
to convert one million hectares of cereals farmland into fruit arbori
culture (Agence pour le Développement Agricole (ADA), 2012). This 
transition has resulted in significant financial gains for farmers, rein
forcing the adoption of intensive agricultural practices. However, this 
structural shift has also made it economically and practically chal
lenging to revert to less intensive, traditional farming systems. Farmers 
who continue to rely on rainfed cereals cultivation face low profitability, 
despite their efficient use of natural resources, particularly water. While 
these traditional systems may be more sustainable from an environ
mental perspective, they do not generate sufficient income to remain 
competitive.

Given the challenges faced by different farm types, it is essential to 
consider climate adaptation strategies. The literature classifies these 
into three categories: expansive, which aims to increase production ef
forts (e.g., developing new water sources such as desalinated water); 
accommodating, which focuses on changing and adopting new water 
management practices; and contractive, which seeks to reduce resource 
use (Wheeler et al., 2013). Based on these three categories, our study 
focuses on accommodating strategies. For farm types 2 and 3, we pro
pose implementing crop rotation with less water-intensive crops, 
introducing new drought-resistant varieties, and promoting diversifi
cation (Deressa et al., 2009).

5. Conclusion

This study provides a comprehensive analysis of groundwater 
resource management and water use efficiency in agricultural systems in 
Morocco’s Chtouka-Massa region, a critical area facing increasing water 
scarcity and aquifer depletion. Using a meta-frontier approach com
bined with Data Envelopment Analysis, we assessed the efficiency of 
three distinct farm households’ types: extensive cereal-arboriculture 
farm households (Type 1), semi-intensive mixed cereal-vegetable farm 
households (Type 2), and intensive vegetables farm households (Type 
3). Our findings reveal significant trade-offs between economic profit
ability and resource efficiency. Type 3 farm households, while gener
ating the highest gross margins, suffer from low efficiency, driven by 
high input consumption, labor demands, and reliance on costly desali
nated water. Type 2 farm households show moderate efficiency but are 
the largest consumers of groundwater, exacerbating aquifer depletion. 
Type 1 farm households, though the most resource-efficient, struggle 
with low profitability, limiting their economic viability. The meta- 
frontier DEA analysis further revealed technological disparities across 
these farm households’ types, quantified through the TGR. While 
extensive farm households operate at their full technological potential, 
intensive farm households display significant inefficiencies due to 
structural and technological constraints. The decomposition of in
efficiencies into TIE and MIE suggests that resource optimization and 
improved management practices could significantly enhance farm 
households’ performance. The results underscore the limitations of the 
GMP, which prioritized agricultural intensification and export-oriented 
production without fully addressing the long-term sustainability of 
water resources. Policies encouraging monoculture, high-input farming, 
and subsidized groundwater extraction have intensified environmental 
pressures and widened the technological gap between farm households’ 
types.

By combining farm typology with efficiency analysis, this study 
contributes new empirical evidence to the debate on agricultural sus
tainability in the dryland regions. Unlike previous research that has 
primarily focused on groundwater depletion (Hssaisoune et al., 2020) or 

policy assessments (Moha et al., 2016), our study bridges the gap by 
quantifying the efficiency trade-offs associated with different farming 
systems. Our findings underscore the urgent need for integrated policies 
that balance economic viability with resource sustainability, ensuring 
that Morocco’s agricultural sector remains resilient in an era of 
increasing water scarcity. The results of this study can serve as a foun
dation for discussions with policymakers and local stakeholders to 
define strategies for more efficient and sustainable production systems 
that consider both farm household viability and environmental 
sustainability.

6. Limitations and future research

This study provides new empirical insights into the efficiency of 
farming systems and water use in Morocco’s Chtouka-Massa region, yet 
several limitations should be acknowledged. The sample size is rela
tively small (40 households), which may not fully capture the diversity 
of practices in the area. Survey data can also be affected by recall or 
reporting bias, although we cross-checked responses with official sta
tistics. Methodologically, DEA and the meta-frontier approach do not 
separate inefficiency from external shocks, and the TGR indicator does 
not explain the drivers of technological gaps. Future studies could 
combine DEA with stochastic models (e.g., SFA) and use direct water-use 
measurements to improve robustness. Finally, the analysis focuses 
mainly on technical and economic efficiency and does not fully address 
long-term environmental sustainability (e.g., soil health, emissions, 
biodiversity). Including these aspects in future research would provide a 
more comprehensive evaluation of farming systems under water scar
city. Finally, these findings are not limited to the case study of the 
Chtouka-Massa plain and could be adapted to other dryland regions in 
the South Mediterranean facing similar agricultural and water man
agement challenges.
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Appendix A 

Table 4 
Loadings and percentage of the cumulative variance explained of 21 variables on the five components

Eigen value 6.61 2.78 2.41 1.79 1.48

Variance (%) 31.47 13.25 11.51 8.54 7.07
Cumulative variance (%) 31.47 44.73 56.24 64.78 71.86
Variable Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
SIP 0.78 − 0.22 − 0.50 0.02 0.19
total_quantity_with_rain 0.57 0.43 0.31 0.47 0.09
gross_margin_unit_deau 0.63 − 0.14 0.58 − 0.35 0.02
TWC 0.74 − 0.17 0.30 0.19 0.42
priv_well 0.43 0.10 0.31 0.79 − 0.07
Dam 0.07 0.65 − 0.22 − 0.26 0.10
desali 0.35 − 0.29 0.49 − 0.44 0.41
%_gag 0.79 0.37 0.02 − 0.14 − 0.35
%sur − 0.54 − 0.27 0.01 0.29 0.43
%asp − 0.04 0.71 − 0.15 − 0.13 0.36
Cereals − 0.20 0.66 − 0.02 0.24 0.54
Veg 0.78 − 0.32 − 0.47 − 0.04 0.08
Arbo − 0.37 − 0.26 − 0.03 0.04 0.05
see_co_ha 0.65 − 0.04 − 0.37 0.13 0.04
total_labour_farm 0.41 0.64 − 0.08 − 0.32 − 0.06
family_labour_(person/year/ha) ¡0.63 − 0.25 − 0.03 − 0.00 0.13
seas_lab 0.57 − 0.25 − 0.35 − 0.02 0.08
NPK 0.59 0.00 0.19 0.35 − 0.38
Fumier 0.10 0.07 − 0.04 − 0.08 − 0.27
gross_margin_(MAD/ha) 0.61 − 0.09 0.64 − 0.24 0.14
Area 0.76 − 0.23 ¡0.51 0.01 0.19

Note: Bold numbers refer to loadings higher than 0.5

Fig. 5. Dendrogram of individuals from Agglomerative Hierarchical Clustering based on PCA factorial coordinates
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Table 6 
Technical Inefficiency Results

Household Meta_Frontier Group_Frontier TIE MIE OI

1 0.756 0.84 0.08 0.16 0.24
2 1.0 1.0 0.0 0.0 0.0
3 1.0 1.0 0.0 0.0 0.0
4 0.782 0.782 0.0 0.21 0.21
5 0.933 1.0 0.06 0.0 0.06
6 0.933 1.0 0.06 0.0 0.06
7 0.789 1.0 0.21 0.0 0.21
8 1.0 1.0 0.0 0.0 0.0
9 0.936 0.994 0.05 0.006 0.06
10 1.0 1.0 0.0 0.0 0.0
11 0.908 1.0 0.09 0.0 0.09
12 1.0 1.0 0.0 0.0 0.0
13 1.0 1.0 0.0 0.0 0.0
14 0.201 0.201 0.0 0.798 0.79
15 0.374 0.405 0.03 0.595 0.626
16 1.0 1.0 0.0 0.0 0.0
17 0.906 1.0 0.09 0.0 0.09
18 1.0 1.0 0.0 0.0 0.0
19 0.212 0.285 0.07 0.71 0.788
20 0.605 0.605 0.0 0.395 0.395
21 0.878 1.0 0.122 0.0 0.122
22 1.0 1.0 0.0 0.0 0.0
23 0.889 0.889 0.0 0.11 0.11
24 0.796 0.796 0.0 0.20 0.20
25 1.0 1.0 0.0 0.0 0.0
26 1.0 1.0 0.0 0.0 0.0
27 1.0 1.0 0.0 0.0 0.0
28 0.199 0.199 0.0 0.80 0.80
29 1.0 1.0 0.0 0.0 0.0
30 1.0 1.0 0.0 0.0 0.0
31 0.986 1.0 0.014 0.0 0.014
32 0.336 0.337 0.001 0.663 0.664
33 0.565 0.723 0.158 0.277 0.435
34 0.095 0.43 0.334 0.570 0.905
35 0.858 0.858 0.0 0.142 0.142
36 0.218 0.244 0.025 0.756 0.782
37 0.223 0.223 0.0 0.777 0.777
38 0.178 0.609 0.431 0.391 0.82
39 0.396 0.446 0.049 0.554 0.604
40 0.688 0.688 0.0 0.312 0.312

Data availability

Data will be made available on request.
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