Martinho V.J.P.D. (2024). Machine learning approaches for evaluating statistical information in the agricultural sector. Cham (Suisse) : Springer. 135 p. (SpringerBriefs in Applied Sciences and Technology).
https://doi.org/10.1007/978-3-031-54608-2
https://doi.org/10.1007/978-3-031-54608-2
Titre : | Machine learning approaches for evaluating statistical information in the agricultural sector |
Auteurs : | V.J.P.D. Martinho |
Type de document : | Ouvrage |
Editeur : | Cham [Suisse] : Springer, 2024 |
Collection : | SpringerBriefs in Applied Sciences and Technology, ISSN 2191-530X |
ISBN/ISSN/EAN : | 978-3-031-54607-5 |
Format : | 135 p. |
Langues : | Anglais |
Langues du résumé : | Anglais |
Catégories : |
Catégories principales 06 - AGRICULTURE. FORÊTS. PÊCHES ; 6.2 - Politique AgricoleThésaurus IAMM POLITIQUE AGRICOLE ; DONNEE STATISTIQUE ; METHODE STATISTIQUE ; PRODUCTION AGRICOLE ; PREVISION ; TECHNIQUE DE PREVISION ; INTELLIGENCE ARTIFICIELLE ; COUT ; ANALYSE DES COUTS ; COUT DE PRODUCTION ; ENGRAIS ; PROTECTION DES PLANTES ; ENERGIE ; MAIN D'OEUVRE ; UNION EUROPEENNE |
Mots-clés: | APPRENTISSAGE AUTOMATIQUE |
Résumé : |
This book presents machine learning approaches to identify the most important predictors of crucial variables for dealing with the challenges of managing production units and designing agriculture policies. The book focuses on the agricultural sector in the European Union and considers statistical information from the Farm Accountancy Data Network (FADN).
Presently, statistical databases present a lot of information for many indicators and, in these contexts, one of the main tasks is to identify the most important predictors of certain indicators. In this way, the book presents approaches to identifying the most relevant variables that best support the design of adjusted farming policies and management plans. These subjects are currently important for students, public institutions and farmers. To achieve these objectives, the book considers the IBM SPSS Modeler procedures as well as the respective models suggested by this software. The book is read by students in production engineering, economics and agricultural studies, public bodies and managers in the farming sector. |
Note de contenu : |
Predictive Machine Learning Approaches to Agricultural Output
Applying Artificial Intelligence to Predict Crop Output Predictive Machine Learning Models for Livestock Output Predicting the Total Costs of Production Factors on Farms in the European Union The Most Important Predictors of Fertiliser Costs Important Indicators for Predicting Crop Protection Costs The Most Adjusted Predictive Models for Energy Costs Machine Learning Methodologies, Wages Paid and the Most Relevant Predictors Predictors of Interest Paid in the European Unions Agricultural Sector Predictive Artificial Intelligence Approaches of Labour Use in the Farming Sector |
Cote : | EUR-I0-MAR-2024 |
URL / DOI : | https://doi.org/10.1007/978-3-031-54608-2 |
Exemplaires (1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
29121 | EUR-I0-MAR-2024 | Papier | Centre de documentation | Espace Géographique | Disponible |