Gajdosikova D., Michulek J., Tulyakova I. (2025). AI-based bankruptcy prediction for agricultural firms in Central and Eastern Europe. International Journal of Financial Studies, 01/09/2025, vol. 13, n. 3, p. 133.
https://doi.org/10.3390/ijfs13030133
https://doi.org/10.3390/ijfs13030133
Titre : | AI-based bankruptcy prediction for agricultural firms in Central and Eastern Europe (2025) |
Auteurs : | D. Gajdosikova ; J. Michulek ; I. Tulyakova |
Type de document : | Article |
Dans : | International Journal of Financial Studies (vol. 13, n. 3, September 2025) |
Article en page(s) : | p. 133 |
Langues : | Anglais |
Langues du résumé : | Anglais |
Catégories : |
Catégories principales 06 - AGRICULTURE. FORÊTS. PÊCHES ; 6.5 - Gestion des ExploitationsThésaurus IAMM GESTION DE L'EXPLOITATION AGRICOLE ; ECONOMIE AGRICOLE ; FAILLITE ; PREVISION ; INTELLIGENCE ARTIFICIELLE ; EUROPE CENTRALE ET ORIENTALE ; BALKANS |
Résumé : | The agriculture sector is increasingly challenged to maintain productivity and sustainability amidst environmental, marketplace, and geopolitical pressures. While precision agriculture enhances physical production, the financial resilience of agricultural firms has been understudied. In this study, machine learning (ML) methods, including logistic regression (LR), decision trees (DTs), and artificial neural networks (ANNs), are employed to predict the bankruptcy risk for Central and Eastern European (CEE) farming firms. All models consistently showed high performance, with AUC values exceeding 0.95. DTs had the highest overall accuracy (95.72%) and F1 score (0.9768), LR had the highest recall (0.9923), and ANNs had the highest discrimination power (AUC = 0.960). Visegrad, Balkan, Baltic, and Eastern Europe subregional models featured economic and structural heterogeneity, reflecting the need for local financial risk surveillance. The results support the development of AI-based early warning systems for agricultural finance, enabling smarter decision-making, regional adaptation, and enhanced sustainability in the sector. |
Cote : | En ligne |
URL / DOI : | https://doi.org/10.3390/ijfs13030133 |